On 9/14/07, David Stahl <[EMAIL PROTECTED]> wrote: > > I am using the sage command groebner_basis(). > > David
OK, this just seems like a case of showing you an example will answer the question. Let me know if it doesn't: sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex') sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching sage: g = I.groebner_basis() sage: g[0].coefficients() [84, -40, 1, 1] sage: g[1].coefficients() [7, 210, -79, 3] sage: g[2].coefficients() [1, 2, 2, -1] sage: g [84*c^4 - 40*c^3 + c^2 + c, 7*b + 210*c^3 - 79*c^2 + 3*c, a + 2*b + 2*c - 1] > > On Sep 14, 1:05 pm, Martin Albrecht <[EMAIL PROTECTED]> > wrote: > > On Friday 14 September 2007, David Stahl wrote: > > > > > Can anyone tell me how to extract the coefficients from the results of > > > groebner()? > > > > Dou you mean Ideal.groebner_basis i.e. the SAGE method or > > SingularElement.groebner i.e. the Singular command? As you try to call coeff > > you probably refer tot he Singular function. Singular doesn't have a command > > coeff but it has a command coef (notice the single 'f'), described here: > > > > http://www.singular.uni-kl.de/Manual/3-0-3/sing_175.htm#SEC215 > > > > Martin > > > > -- > > name: Martin Albrecht > > _pgp:http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 > > _www:http://www.informatik.uni-bremen.de/~malb > > _jab: [EMAIL PROTECTED] > > > > > -- William Stein Associate Professor of Mathematics University of Washington http://wstein.org --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/ -~----------~----~----~----~------~----~------~--~---