On 9/14/07, David Stahl <[EMAIL PROTECTED]> wrote:
>
> I am using the sage command groebner_basis().
>
> David

OK, this just seems like a case of showing you an example will
answer the question.   Let me know if it doesn't:

sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex')
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: g = I.groebner_basis()
sage: g[0].coefficients()
[84, -40, 1, 1]
sage: g[1].coefficients()
[7, 210, -79, 3]
sage: g[2].coefficients()
[1, 2, 2, -1]
sage: g
[84*c^4 - 40*c^3 + c^2 + c, 7*b + 210*c^3 - 79*c^2 + 3*c, a + 2*b + 2*c - 1]


>
> On Sep 14, 1:05 pm, Martin Albrecht <[EMAIL PROTECTED]>
> wrote:
> > On Friday 14 September 2007, David Stahl wrote:
> >
> > > Can anyone tell me how to extract the coefficients from the results of
> > > groebner()?
> >
> > Dou you mean Ideal.groebner_basis i.e. the SAGE method or
> > SingularElement.groebner i.e. the Singular command? As you try to call coeff
> > you probably refer tot he Singular function. Singular doesn't have a command
> > coeff but it has a command coef (notice the single 'f'), described here:
> >
> > http://www.singular.uni-kl.de/Manual/3-0-3/sing_175.htm#SEC215
> >
> > Martin
> >
> > --
> > name: Martin Albrecht
> > _pgp:http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
> > _www:http://www.informatik.uni-bremen.de/~malb
> > _jab: [EMAIL PROTECTED]
>
>
> >
>


-- 
William Stein
Associate Professor of Mathematics
University of Washington
http://wstein.org

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to