On 8/27/07, Justin Walker <[EMAIL PROTECTED]> wrote: > Hi, all, > > I do this, and get integers, but the types are rational: > > sage: b1=0 > sage: b2=2 > sage: s=(b1+b2)/2 > sage: n=(b1-b2)/2 > sage: s > 1 > sage: n > -1
That s and n are rational is correct, since "/ is a constructor for elements of the fraction field". If you want integers you might do a floor div or explicit coercion: s = (b1+b2)//2 or s = ZZ((b1+b2)/2) > Then I do this: > > sage: xgcd(s,n) > --------------------------------------------------------------------------- > <type 'exceptions.AttributeError'> Traceback (most recent call last) > > /SandBox/Justin/sb/Sage/Code/<ipython console> in <module>() > > /SandBox/Justin/sb/sage-2.8/local/lib/python2.5/site-packages/sage/rings/arith.py > in xgcd(a, b) > 1122 if not isinstance(a, RingElement): > 1123 a = integer_ring.ZZ(a) > -> 1124 return a.xgcd(b) > 1125 > 1126 XGCD = xgcd > > <type 'exceptions.AttributeError'>: 'sage.rings.rational.Rational' object has > no attribute 'xgcd' > > Is this expected? It seems, somehow, wrong :-} It's a bug. The fix is in the attached patch. William --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/ -~----------~----~----~----~------~----~------~--~---
5891.patch
Description: Binary data