The gap.eval's can be removed like this: C3 = CyclicPermutationGroup(3)._gap_() C = C3.CayleyGraph(C3.GeneratorsOfGroup()) V = C.Vertices().Elements() E = C.UndirectedEdges() L = [[y[1] for y in [x for x in E if v in x] if y[1]!=v]+[y[2] for y in [x for x in E if v in x] if y[2]!=v] for v in V] d = dict(zip(V,L)) G = Graph(d) show(G.plot())
GAP lists are indexed from 1, not 0, so I changed the line for L. This was needed to get it to work on https://sage.math.washington.edu:8103/ On Aug 6, 7:46 am, "David Joyner" <[EMAIL PROTECTED]> wrote: > Here is an example of constructing a Cayley graph in SAGE (this uses grape): > > sage: gap.eval("C := CayleyGraph(Group([(1,2,3)]),[(1,2,3)])") > 'rec( isGraph := true, order := 3, group := Group([ (1,2,3) ]), \n > schreierVector := [ -1, 1, 1 ], adjacencies := [ [ 2, 3 ] ], \n > representatives := [ 1 ], names := [ (), (1,2,3), (1,3,2) ], \n > isSimple := true )' > sage: V = eval(gap.eval("Elements(Vertices(C))")) > sage: E = eval(gap.eval("UndirectedEdges(C)")) > sage: L = [[y[0] for y in [x for x in E if v in x] if y[0]!=v]+[y[1] > for y in [x for x in E if v in x] if y[1]!=v] for v in V] > sage: d = dict(zip(V,L)) > sage: G = Graph(d) > sage: show(G.plot()) > > Question: Can anyone this of a simpler way to do this? > > - David Joyner --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/ -~----------~----~----~----~------~----~------~--~---