I have been trying to determine a good way to filter complex expressions from a Sequence. Here is an example:
sage: a = 879 == 265 * e^(20 * r) sage: solve(a,r) [r == log(879^(1/20)*e^(I*pi/10)/265^(1/20)), r == log(879^(1/20)*e^(I*pi/5)/265^(1/20)), r == log(879^(1/20)*e^(3*I*pi/10)/265^(1/20)), r == log(879^(1/20)*e^(2*I*pi/5)/265^(1/20)), r == log(879^(1/20)*I/265^(1/20)), r == log(879^(1/20)*e^(3*I*pi/5)/265^(1/20)), r == log(879^(1/20)*e^(7*I*pi/10)/265^(1/20)), r == log(879^(1/20)*e^(4*I*pi/5)/265^(1/20)), r == log(879^(1/20)*e^(9*I*pi/10)/265^(1/20)), r == log(-879^(1/20)/265^(1/20)), r == ((10*log(879^(1/20)/265^(1/20)) - 9*I*pi)/10), r == ((5*log(879^(1/20)/265^(1/20)) - 4*I*pi)/5), r == ((10*log(879^(1/20)/265^(1/20)) - 7*I*pi)/10), r == ((5*log(879^(1/20)/265^(1/20)) - 3*I*pi)/5), r == log(-879^(1/20)*I/265^(1/20)), r == ((5*log(879^(1/20)/265^(1/20)) - 2*I*pi)/5), r == ((10*log(879^(1/20)/265^(1/20)) - 3*I*pi)/10), r == ((5*log(879^(1/20)/265^(1/20)) - I*pi)/5), r == ((10*log(879^(1/20)/265^(1/20)) - I*pi)/10), r == log(879^(1/20)/265^(1/20))] I would like to obtain a subset of this Sequence that does not contain any complex expressions ( probably using a list comprehension ) but I have not found a function yet that will indicate whether an expression is complex or not. Any thoughts? Thanks in advance :-) Ted --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/ -~----------~----~----~----~------~----~------~--~---