I have been trying to determine a good way to filter complex
expressions from a Sequence.  Here is an example:

sage: a = 879 == 265 * e^(20 * r)

sage: solve(a,r)

[r == log(879^(1/20)*e^(I*pi/10)/265^(1/20)), r ==
log(879^(1/20)*e^(I*pi/5)/265^(1/20)), r ==
log(879^(1/20)*e^(3*I*pi/10)/265^(1/20)), r ==
log(879^(1/20)*e^(2*I*pi/5)/265^(1/20)), r ==
log(879^(1/20)*I/265^(1/20)), r ==
log(879^(1/20)*e^(3*I*pi/5)/265^(1/20)), r ==
log(879^(1/20)*e^(7*I*pi/10)/265^(1/20)), r ==
log(879^(1/20)*e^(4*I*pi/5)/265^(1/20)), r ==
log(879^(1/20)*e^(9*I*pi/10)/265^(1/20)), r ==
log(-879^(1/20)/265^(1/20)), r == ((10*log(879^(1/20)/265^(1/20)) -
9*I*pi)/10), r == ((5*log(879^(1/20)/265^(1/20)) - 4*I*pi)/5), r ==
((10*log(879^(1/20)/265^(1/20)) - 7*I*pi)/10), r ==
((5*log(879^(1/20)/265^(1/20)) - 3*I*pi)/5), r ==
log(-879^(1/20)*I/265^(1/20)), r == ((5*log(879^(1/20)/265^(1/20)) -
2*I*pi)/5), r == ((10*log(879^(1/20)/265^(1/20)) - 3*I*pi)/10), r ==
((5*log(879^(1/20)/265^(1/20)) - I*pi)/5), r ==
((10*log(879^(1/20)/265^(1/20)) - I*pi)/10), r ==
log(879^(1/20)/265^(1/20))]

I would like to obtain a subset of this Sequence that does not contain
any complex expressions ( probably using a list comprehension ) but I
have not found a function yet that will indicate whether an expression
is complex or not.  Any thoughts?

Thanks in advance :-)

Ted

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://sage.math.washington.edu/sage/ and http://sage.scipy.org/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to