On Mon, Mar 9, 2009 at 6:44 AM, Harald Schilly <harald.schi...@gmail.com> wrote:
>
> Hi, thx, but the correct URL is http://sagenb.org/home/pub/298/


This did not work for me, but the original one did.
(FF, amd64 ubuntu 8.04)

>
> H
>
> On Mar 8, 10:37 pm, "ma...@mendelu.cz" <ma...@mendelu.cz> wrote:
>> Dear readers of this group, I wrote a simple sagelet which describes
>> approximation of a function in two variabels using differential. The
>> sagelet is published athttp://www.sagenb.org/home/pub/298/
>>
>> I hope, somebody finds it useful in her/his courses.
>>
>> Any suggestions are welcomed.
>>
>> Robert Marik
>>
>> ---------------
>> code:
>>
>> x,y=var('x y')
>> html('<h2>Explaining approximation of a function in two \
>> variables by differential</h2>')
>> html('Points x0 and y0 are values where the exact value of the
>> function \
>> is known. Deltax and Deltay are displacements of the new point. Exact
>> value \
>> and approximation by differential at shifted point are compared.')
>> @interact
>> def _(func=input_box('sqrt(x^3+y^3)',label="f(x,y)=",type=str), x0=1,
>> y0=2, \
>>  deltax=slider(-1,1,0.01,0.2),\
>>  deltay=slider(-1,1,0.01,-0.4), xmin=0, xmax=2, ymin=0, ymax=3):
>>  f=sage_eval('lambda x,y: ' + func)
>>  derx(x,y)=diff(f(x,y),x)
>>  dery(x,y)=diff(f(x,y),y)
>>  tangent(x,y)=f(x0,y0)+derx(x0,y0)*(x-x0)+dery(x0,y0)*(y-y0)
>>  A=plot3d(f(x,y),(x,xmin,xmax),(y,ymin,ymax),opacity=0.5)
>>  B=plot3d(tangent(x,y),(x,xmin,xmax),
>> (y,ymin,ymax),color='red',opacity=0.5)
>>  C=point3d((x0,y0,f(x0,y0)),rgbcolor='blue',size=9)
>>  CC=point3d((x0+deltax,y0+deltay,f
>> (x0+deltax,y0+deltay)),rgbcolor='blue',size=9)
>>  D=point3d((x0+deltax,y0+deltay,tangent
>> (x0+deltax,y0+deltay)),rgbcolor='red',size=9)
>>  exact_value_ori=f(x0,y0).n(digits=10)
>>  exact_value=f(x0+deltax,y0+deltay)
>>  approx_value=tangent(x0+deltax,y0+deltay).n(digits=10)
>>  abs_error=(abs(exact_value-approx_value))
>>  html(r'Function $ f(x,y)=%s \approx %s $ '%(latex(f(x,y)),latex
>> (tangent(x,y))))
>>  html(r' $f %s = %s$'%(latex((x0,y0)),latex(exact_value_ori)))
>>  html(r'Shifted point $%s$'%latex(((x0+deltax),(y0+deltay))))
>>  html(r'Value of the function in shifted point is $%s$'%f
>> (x0+deltax,y0+deltay))
>>  html(r'Value on the tangent plane in shifted point is $%s$'%latex
>> (approx_value))
>>  html(r'Error is $%s$'%latex(abs_error))
>>  show(A+B+C+CC+D)
> >
>

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-edu" group.
To post to this group, send email to sage-edu@googlegroups.com
To unsubscribe from this group, send email to 
sage-edu+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-edu?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to