Jean-Pierre Flori wrote: > Hi all, > > It seems we are left with only one failing doctest, which just looks > like a different but potentially valid answer: > https://trac.sagemath.org/ticket/17254#comment:364 > > Does any one knows enough about resolution of singularities to validate > the new answer?
The failing doctest is sage: set_verbose(-1) sage: K.<a> = QuadraticField(3) sage: A.<x,y> = AffineSpace(K, 2) sage: C = A.curve(x^4 + 2*x^2 + a*y^3 + 1) sage: C.resolution_of_singularities(extend=True)[0] # long time (2 seconds) (Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by 24*x^2*ss1^3 + 24*ss1^3 + (a0^3 - 8*a0), Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by 24*s1^2*ss0 + (a0^3 - 8*a0)*ss0^2 + (6*a0^3)*s1, Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by 8*y^2*s0^4 + (-4*a0^3)*y*s0^3 - 32*s0^2 + (a0^3 - 8*a0)*y) The new answer has changed signs in two cases (cf. diff in the comment JP links to above): (Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by 24*x^2*ss1^3 + 24*ss1^3 + (a0^3 - 8*a0), Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by 24*s1^2*ss0 + (a0^3 - 8*a0)*ss0^2 + (-6*a0^3)*s1, ---------------------------------------^ Affine Plane Curve over Number Field in a0 with defining polynomial y^4 - 4*y^2 + 16 defined by 8*y^2*s0^4 + (4*a0^3)*y*s0^3 - 32*s0^2 + (a0^3 - 8*a0)*y) ---------------^ -leif -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To post to this group, send email to sage-devel@googlegroups.com. Visit this group at https://groups.google.com/group/sage-devel. For more options, visit https://groups.google.com/d/optout.