(%i1) f(r,phi) := signum(r^2 - 4);
                                               2
(%o1)                     f(r, phi) := signum(r  - 4)
(%i2) integrate(integrate(r*f(r,phi), r, 0, 3), phi, 0, 2*%pi);
(%o2)                               - 9 %pi

That's strange


суббота, 9 апреля 2016 г., 19:14:49 UTC+3 пользователь Dima Pasechnik 
написал:
>
> Try these computations directly in Maxima, and see whether it's still a 
> discrepancy there.
>
> On Saturday, April 9, 2016 at 1:31:44 PM UTC+1, Sergey V Kozlukov wrote:
>>
>> x, y, r, phi = var('x y r phi')
>> f(x, y) = sign(x^2 + y^2 - 4)
>> T(r, phi) = [r*cos(phi), r*sin(phi)]
>> J = diff(T).det().simplify_full()
>> T_f = f.substitute(x=T[0], y=T[1])
>> int_f = integral(integral(T_f*abs(J), r, 0, 3), phi, 0, 2*pi).
>> simplify_full()
>> show(r"$\iint\limits_\Omega%s = %s$"%(latex(f(x)), latex(int_f)))
>> Returns correct answer: $\pi$, while
>> x, y, r, phi = var('x y r phi')
>> f(x, y) = sign(x^2 + y^2 - 4)
>> T(r, phi) = [r*cos(phi), r*sin(phi)]
>> J = diff(T).det() #.simplify_full()
>> T_f = f.substitute(x=T[0], y=T[1])
>> int_f = integral(integral(T_f*abs(J), r, 0, 3), phi, 0, 2*pi).
>> simplify_full()
>> show(r"$\iint\limits_\Omega%s = %s$"%(latex(f(x)), latex(int_f)))
>> Yields $-9\pi$
>> The only thing simplify_full() changes here is it applies identity 
>> $\sin^2 + \cos^2 = 1$
>>
>> Code was executed in SMC worksheet
>>
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To post to this group, send email to sage-devel@googlegroups.com.
Visit this group at https://groups.google.com/group/sage-devel.
For more options, visit https://groups.google.com/d/optout.

Reply via email to