I am trying to implement free groups in sage. I try to inherit from
ParentWithGens, and seems to work. But when i call the .hom procedure
passing the image of the generators, it fails.

This is the declartion of my class:

class FreeGroup(UniqueRepresentation, group.Group,ParentWithGens):
        Element=FreeGroupElement
        def __init__(self,gens):
                self._gens_str_=tuple(gens)
                if len(gens)==1:
                        strgen='("'+gens[0]+'")'
                else:
                        strgen=str(self._gens_str_).replace("'",'"')
                self._gap_repr_=gap('FreeGroup'+strgen)
                
self._gens_dict_=dict([(gens[i],self._gap_repr_.GeneratorsOfGroup()[i
+1]) for i in range(len(gens)-1)])
                group.Group.__init__(self)
                self._assign_names(gens)
        def ngens(self):
                return len(self._gens_str_)
        def _repr_(self):
                return "Free Group on generators "+str(self._gens_str_)
        def gen(self,i):
                return self([i+1])
        def gens(self):
                return tuple([self.gen(i) for i in range(self.ngens())])
        def generators(self):
                return tuple([self.gen(i) for i in range(self.ngens())])
        def one(self):
                return self([])
        def _an_element_(self):
                return self.one()
        def gap(self):
                return self._gap_repr_
        def _element_constructor_(self, *args,**kwds):
                if len(args)!=1:
                        return self.element_class(*args,parent=self,**kwds)
                x = args[0]
                if x==1:
                        return self.one()
                try:
                        P = x.parent()
                except AttributeError:
                        return self.element_class(x,parent=self,**kwds)
                if hasattr(P,'_freegroup_'):
                        if P.FreeGroup() is self:
                                return 
self.element_class(x.TietzeList(),parent=self,**kwds)
                return self.element_class(x,parent=self,**kwds)

And the element class is:

class FreeGroupElement(Element):
        def __init__(self,l=[],parent=None):
                if parent is None:
                        raise ValueError, "The parent must be provided"
                if len(l)>0:
                        if (parent.rank()<max(l)) or (-parent.rank() > min(l)):
                                raise ValueError, "Generators not in the group"
        
self._gap_=gap(l).AbstractWordTietzeWord(parent._gap_repr_.GeneratorsOfGroup())
        
self._TietzeList_=map(Integer,list(self._gap_.TietzeWordAbstractWord()))
                Element.__init__(self,parent)
        def _repr_(self):
                return str(self._gap_)
        def _mul_(self,other):
                C=self.__class__
                return
C(list((self._gap_*other._gap_).TietzeWordAbstractWord()),self.parent())
        def __cmp__(self,other):
                return cmp(self.TietzeList(),other.TietzeList())
        def __div__(self,other):
                C=self.__class__
                return
C(list((self._gap_*other._gap_.Inverse()).TietzeWordAbstractWord()),self.parent())
        def __pow__(self,other):
                if not other in IntegerRing():
                        raise TypeError, "exponent must be an integer"
                C=self.__class__
                return
C(list((self._gap_.POW(gap(other))).TietzeWordAbstractWord()),self.parent())
        def gap(self):
                """
                Returns a gap representation of the element

                EXAMPLES:

                sage: G=FreeGroup(('a','b'))
                sage: x=G([1,2,-1,-2])
                sage: x
                a*b*a^-1*b^-1
                sage: xg=x.gap()
                sage: xg
                a*b*a^-1*b^-1
                sage: type(xg)
                <class 'sage.interfaces.gap.GapElement'>
                """
                return self._gap_
        def TietzeList(self):
                """
                Returns the Tietze List of the element.

                EXAMPLES:

                sage: G=FreeGroup(('a','b'))
                sage: G.inject_variables()
                sage: a.TietzeList()
                [1]
                sage: x=a^2*b^(-3)*a^(-2)
                sage: x.TietzeList()
                [1, 1, -2, -2, -2, -1, -1]
                """
                return self._TietzeList_
        def __invert__(self):
                return self.__pow__(-1)
        def inverse(self):
                """
                Returns the inverse of self
                """
                return ~self


Mostly it works fine: you can define the group, and operate with its
elements. But when i try to define a morphism by giving the images of
the generators, it fails:

sage: G=FreeGroup(('a','b','c'))
sage: G.inject_variables()
Defining a, b, c
sage: G.hom([b,b,b])
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call
last)

/home/mmarco/sage-4.7.2/<ipython console> in <module>()

/home/mmarco/sage-4.7.2/local/lib/python2.6/site-packages/sage/
structure/parent_gens.so in
sage.structure.parent_gens.ParentWithGens.hom (sage/structure/
parent_gens.c:3820)()

/home/mmarco/sage-4.7.2/local/lib/python2.6/site-packages/sage/
structure/parent.so in sage.structure.parent.Parent.hom (sage/
structure/parent.c:9556)()

/home/mmarco/sage-4.7.2/local/lib/python2.6/site-packages/sage/
categories/homset.pyc in __call__(self, x, y, check, on_basis)
    431             return self.element_class_set_morphism(self, x)
    432
--> 433         raise TypeError, "Unable to coerce x (=%s) to a
morphism in %s"%(x,self)
    434
    435     @lazy_attribute

TypeError: Unable to coerce x (=[b, b, b]) to a morphism in Set of
Morphisms from Free Group on generators ('a', 'b', 'c') to Free Group
on generators ('a', 'b', 'c') in Category of groups


Which is the right way to define a parent with gens in this case? I
have read in the code that ParentWithGens is deprecated, but i haven't
found which is the correct way to do it.

-- 
To post to this group, send an email to sage-devel@googlegroups.com
To unsubscribe from this group, send an email to 
sage-devel+unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URL: http://www.sagemath.org

Reply via email to