I reproduced this in sage 4.8, but with different results: sage: f(x) = sin(x)^2/x^2 sage: f.integral(x, -50000, 50000).n() -0.0000200000071537570 sage: f.integral(x, -5000000, 5000000).n() -2.00000008410959e-7 sage: f.integral(x, -500000000, 500000000).n() -2.00000000109169e-9
The answer seems to get smaller and smaller as the bounds get farther apart. If the bounds get very far apart, something interesting happens: sage: f.integral(x, -1000000000000000, 1000000000000000) x |--> -I*gamma(-1, -2000000000000000*I) + I*gamma(-1, 2000000000000000*I) - 1/1000000000000000 I think this has to do with the way sage evaluates an integral. If you interrupt while it's evaluating, this appears sage: f.integral(x, -500000001, 500000000).n() ^C--------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) /home/andrew/sage-4.8/<ipython console> in <module>() /home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/symbolic/expression.so in sage.symbolic.expression.Expression._numerical_approx (sage/symbolic/expression.cpp:18004)() /home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/symbolic/expression.so in sage.symbolic.expression.Expression._convert (sage/symbolic/expression.cpp:5089)() /home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/functions/other.pyc in _evalf_(self, x, y, parent) 719 """ 720 try: --> 721 return x.gamma_inc(y) 722 except AttributeError: 723 if not (is_ComplexNumber(x)): /home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/rings/complex_number.so in sage.rings.complex_number.ComplexNumber.gamma_inc (sage/rings/complex_number.c:12096)() /home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/libs/pari/gen.so in sage.libs.pari.gen.gen.incgam (sage/libs/pari/gen.c:19395)() I have no idea what this means, so maybe someone with more experience could more accurately diagnose the results. Cheers! On Tue, 2012-04-17 at 14:03 -0700, ggrafendorfer wrote: > Hi, > > sage 5.0 beta11, on Fedora 15, AMD Phenom II X4: > > sage: f(x) = sin(x)^2/x^2 > sage: f.integral(x, -infinity, infinity) > x |--> pi > sage: f.integral(x, -infinity, infinity).n() > 3.14159265358979 > sage: f.integral(x, -50000, 0).n() + f.integral(x, 0, 50000).n() > 3.1415769097886317 > > everthing fine so far, but > > sage: f.integral(x, -50000, 50000).n() > 0.06953294323974919 > sage: f.integral(x, -5000000, 5000000).n() > 0.002749874456609362 > > Am I over-worked, or is this a bug!? > > Georg > Georg > -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org