I reproduced this in sage 4.8, but with different results:

sage: f(x) = sin(x)^2/x^2
sage: f.integral(x, -50000, 50000).n()
-0.0000200000071537570
sage: f.integral(x, -5000000, 5000000).n()
-2.00000008410959e-7
sage: f.integral(x, -500000000, 500000000).n()
-2.00000000109169e-9

The answer seems to get smaller and smaller as the bounds get farther
apart.

If the bounds get very far apart, something interesting happens:
sage: f.integral(x, -1000000000000000,
1000000000000000)                 
x |--> -I*gamma(-1, -2000000000000000*I) + I*gamma(-1,
2000000000000000*I) - 1/1000000000000000

I think this has to do with the way sage evaluates an integral. If you
interrupt while it's evaluating, this appears

sage: f.integral(x, -500000001, 500000000).n()
^C---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call
last)

/home/andrew/sage-4.8/<ipython console> in <module>()

/home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/symbolic/expression.so
 in sage.symbolic.expression.Expression._numerical_approx 
(sage/symbolic/expression.cpp:18004)()

/home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/symbolic/expression.so
 in sage.symbolic.expression.Expression._convert 
(sage/symbolic/expression.cpp:5089)()

/home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/functions/other.pyc
 in _evalf_(self, x, y, parent)
    719         """
    720         try:
--> 721             return x.gamma_inc(y)
    722         except AttributeError:
    723             if not (is_ComplexNumber(x)):

/home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/rings/complex_number.so
 in sage.rings.complex_number.ComplexNumber.gamma_inc 
(sage/rings/complex_number.c:12096)()

/home/andrew/sage-4.8/local/lib/python2.6/site-packages/sage/libs/pari/gen.so 
in sage.libs.pari.gen.gen.incgam (sage/libs/pari/gen.c:19395)()

I have no idea what this means, so maybe someone with more experience
could more accurately diagnose the results.

Cheers!


On Tue, 2012-04-17 at 14:03 -0700, ggrafendorfer wrote:
> Hi,
> 
> sage 5.0 beta11, on Fedora 15, AMD Phenom II X4:
> 
> sage: f(x) = sin(x)^2/x^2
> sage: f.integral(x, -infinity, infinity)
> x |--> pi
> sage: f.integral(x, -infinity, infinity).n()
> 3.14159265358979
> sage: f.integral(x, -50000, 0).n() + f.integral(x, 0, 50000).n()
> 3.1415769097886317
> 
> everthing fine so far, but
> 
> sage: f.integral(x, -50000, 50000).n()
> 0.06953294323974919
> sage: f.integral(x, -5000000, 5000000).n()
> 0.002749874456609362
> 
> Am I over-worked, or is this a bug!?
> 
> Georg
> Georg
> 


-- 
To post to this group, send an email to sage-devel@googlegroups.com
To unsubscribe from this group, send an email to 
sage-devel+unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URL: http://www.sagemath.org

Reply via email to