Le Sun, 5 Feb 2012 14:16:39 -0800, Jonathan Bober <jwbo...@gmail.com> a écrit : > Never mind all that: the gsl implementation is not very good at all, > whereas the libc implementation on my machine seems quite good.
Bad :-/ > Old (libc): > > sage: gamma(1.23).str(base=2) > '0.11101001001001110011101011110010110010101100101100001' > sage: RR(gamma(1.23r)).str(base=2) > '0.11101001001001110011101011110010110010101100101100001' > > gsl: > > sage: RR(gamma(1.23r)).str(base=2) > '0.11101001001001110011101011100000000000111110110111001' > > look at all the wrong digits! In my testing, gsl_gamma() has a typical > error of around 1e-8 on random input between 1 and 2, the tgammal() > rounded to double precision has a typical error of 0 (compared to the > correctly rounded value from mpfr). > > What do you get on ARM if you do something like > > sage: for n in range(100): > ....: x = RR.random_element(1, 2) > ....: print abs(RR(gamma(float(x))) - x.gamma()) > ....: > > ? On newton(x86_64): jpuydt@newton:~$ cat /tmp/test.sage from sage import * l=[] for n in range(100): x= RR.random_element(1,2) l.append (abs(RR(gamma(float(x))-x.gamma()))) print(max(l)) jpuydt@newton:~$ ~/sage-4.8/sage /tmp/test.sage 0.000000000000000 and the same test.sage on hecke(ARM): jpuydt@hecke:~$ ~/sage-4.8/sage test.sage 1.11022302462516e-16 Sigh. Snark on #sagemath -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org