sage: G = AbelianGroup(1,[2]) sage: ZG = GroupAlgebra(G) sage: f = ZG(G.gen()) sage: f in ZG True sage: ZG(f) ... TypeError: Don't know how to create an element of Group algebra of group "Multiplicative Abelian Group isomorphic to C2" over base ring Integer Ring from f
------ Proposed fix: --- a/sage/algebras/group_algebra.py Fri May 06 15:29:53 2011 -0700 +++ b/sage/algebras/group_algebra.py Sun May 08 14:40:24 2011 -0700 @@ -234,6 +234,8 @@ sage: ZG = GroupAlgebra(G) sage: ZG(f) f + sage: ZG(f) == ZG(ZG(f)) + True sage: ZG(1) == ZG(G(1)) True sage: ZG(FormalSum([(1,f), (2, f**2)])) @@ -305,7 +307,10 @@ if not hasattr(x, 'parent'): x = IntegerRing()(x) # occasionally coercion framework tries to pass a Python int - if isinstance(x, FormalSum): + if parent is x.parent(): + self._fs = x._fs + + elif isinstance(x, FormalSum): if check: for c,d in x._data: if d.parent() != self.parent().group(): -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org