Hi Tim,

On 11 Feb., 08:06, daly <d...@axiom-developer.org> wrote:
> ...
> Can you suggest an algorithm to implement this?
> Is there an agreed-upon answer (i.e., not 42?)

Well, I had the impression that a couple of people are in favour of
the following:
 gcd(a/b,c/d) := gcd(a,c)/lcm(b,d)
 lcm(a/b,c/d) := lcm(a,c)/gcd(b,d)

It seems that this definition is already used in Maxima:
 sage: a=maxima(3/4)
 sage: b=maxima(5/6)
 sage: gcd(a,b)
 1/12

Moreover, as one can easily see, the property gcd(x,y)*lcm(x,y)=x*y is
preserved by that definition. In addition, if F is the fraction field
of R and a,b are elements of R, then gcd(F(a),F(b))==gcd(a,b) and
lcm(F(a),F(b))==lcm(a,b).

So, that's the rationale.

Best regards,
Simon

-- 
To post to this group, send an email to sage-devel@googlegroups.com
To unsubscribe from this group, send an email to 
sage-devel+unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URL: http://www.sagemath.org

Reply via email to