On Sat, Feb 5, 2011 at 2:01 PM, Rob Beezer <goo...@beezer.cotse.net> wrote: > I've finished a major overhaul of the matrix kernel routines, aiming > for greater reliability and easier maintenance. It has required > almost no changes outside of sage/matrix but I have one problemsome > doctest that now fails. > > http://trac.sagemath.org/sage_trac/ticket/10746 > > Notice that current behavior at a 4.6.2.alpha3 command line is to give > a different result on a subsequent run (and then it stays the same, > giving the second result repeatedly). With my patches, I get a third > value, but the runs all give the same result. > > Any advice or suggestions on what is happening here? I know there is > some randomness in these computations, so maybe this test needs more > precautions? By adjusting the "3" in the system_of_eigenvalues() call > you can get a longer list of values. Are any of these answers, wrong, > or are any right? I've tried to chase my way back to some of the > matrix code, but I'm a bit out of my element on this one. > > Thanks in advance for any assistance. > > Rob > > > > ** Essence of original doctest, sage/modular/hecke/module.py, ~ line > 1545 > > sage: set_random_seed(0) > > :: > > sage: ModularSymbols_clear_cache() > > :: > > sage: M = ModularSymbols(62,2,sign=-1) > > sage: S = M.cuspidal_submodule().new_submodule() > > sage: [A.system_of_eigenvalues(3) for A in S.decomposition()] > > [[1, 1, 0], [1, -1, -alpha - 1]]
This is not enough information to decide whether or not the output is correct. Can you run the following line immediately after the above line in each case: sage: [A.system_of_eigenvalues(3)[0].parent() for A in S.decomposition()] [Rational Field, Number Field in alpha with defining polynomial x^2 + 4*x + 1] It's important to number what the defining polynomial of the number field is in each case. William > > > > ** 4.6.2.alpha3 command-line: > > sage: set_random_seed(0) > > sage: ModularSymbols_clear_cache() > > sage: M = ModularSymbols(62,2,sign=-1) > > sage: S = M.cuspidal_submodule().new_submodule() > > sage: [A.system_of_eigenvalues(3) for A in S.decomposition()] > > [[1, 1, 0], [1, -1, -alpha - 1]] > > sage: set_random_seed(0) > > sage: ModularSymbols_clear_cache() > > sage: M = ModularSymbols(62,2,sign=-1) > > sage: S = M.cuspidal_submodule().new_submodule() > > sage: [A.system_of_eigenvalues(3) for A in S.decomposition()] > > [[1, 1, 0], [1, -1, 1/2*alpha + 1/2]] > > > 4.6.2.alpha3 w/ kernel patch, command-line: > > sage: set_random_seed(0) > > sage: ModularSymbols_clear_cache() > > sage: M = ModularSymbols(62,2,sign=-1) > > sage: S = M.cuspidal_submodule().new_submodule() > > sage: [A.system_of_eigenvalues(3) for A in S.decomposition()] > > [[1, 1, 0], [1, -1, -1/2*alpha - 1/2]] > > sage: set_random_seed(0) > > sage: ModularSymbols_clear_cache() > > sage: M = ModularSymbols(62,2,sign=-1) > > sage: S = M.cuspidal_submodule().new_submodule() > > sage: [A.system_of_eigenvalues(3) for A in S.decomposition()] > > [[1, 1, 0], [1, -1, -1/2*alpha - 1/2]] > > -- > To post to this group, send an email to sage-devel@googlegroups.com > To unsubscribe from this group, send an email to > sage-devel+unsubscr...@googlegroups.com > For more options, visit this group at > http://groups.google.com/group/sage-devel > URL: http://www.sagemath.org > -- William Stein Professor of Mathematics University of Washington http://wstein.org -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org