I get very high memory usage when I do something like: sage: get_memory_usage() -> 809.9453125 sage: A=vector(range(0,10000))/1 sage: get_memory_usage() -> 5393.2734375
Which is a whooping 4.5GB+ of memory to hold a 10000 float vector... I would have thought more of something along the lines of 24bytes/ float * 10000 floats + some overhead for the vector object ~= 240KB. I've tried using heapy from the guppy suite:, but it reports only 60MB or such being used, so it does not seem to be of any help. sage: from guppy import hpy sage: hp=hpy() sage: hp.heap() which prints: Partition of a set of 374466 objects. Total size = 60621904 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 168476 45 28098936 46 28098936 46 str 1 97099 26 8491984 14 36590920 60 tuple 2 1595 0 4074632 7 40665552 67 dict of module 3 25460 7 3055200 5 43720752 72 types.CodeType 4 24287 6 2914440 5 46635192 77 function 5 2642 1 2701232 4 49336424 81 dict of type 6 2642 1 2372344 4 51708768 85 type 7 2865 1 1792920 3 53501688 88 dict (no owner) 8 10000 3 880000 1 54381688 90 sage.modules.vector_integer_dense.Vector_integer_dense 9 760 0 668224 1 55049912 91 dict of class <854 more rows. Type e.g. '_.more' to view.> Total size is nonsense, so I've stopped the analysis there. ;) -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org