On 09/12/2010 06:41 PM, mda_ wrote: > sage: float(e^(-pi/2)) > 0.20787957635076193 > > The last digit should be 1, since > i^i = 0.20787957635076190854........
You could try, e.g., sage: (e^(-pi/2)).numerical_approx(100) 0.20787957635076190854695561983 sage: (i^i).numerical_approx(100) 0.20787957635076190854695561983 or sage: (e^(-pi/2)).n(100) 0.20787957635076190854695561983 sage: (i^i).n(100) 0.20787957635076190854695561983 > sage does not recognize this identity: > > sage: e^(-pi/2) == i^i > e^(-1/2*pi) == I^I > > ("True" expected as output.) This appears to work: sage: bool(e^(-pi/2) == i^i) True > What's the best way to ask sage for floating point approximations; for > fixed types and unlimited precision types? -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org