This appears to be a bug in Maxima. (%i1) load(simplify_sum); <snip> (%i3) simplify_sum(sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j +1,n));
(%o3) 0 (%i4) simplify_sum(sum(binomial(5,k)*binomial(k-1,3)*(-1)**(k-1-3),k, 4,5)); (%o4) 1 (%i5) 5*1*1+1*4*(-1); (%o5) 1 In fact, the answer appears to always be 1 or 0. Is that true? On Jul 27, 1:17 am, Henryk Trappmann <bo198...@googlemail.com> wrote: > sage: (n,k,j)=var('n,k,j') > sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j+1,n) > 0 > sage: (n,j)=(5,3) > sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j) for k in range(j > +1,n+1)) > 1 > > The symbolic sum being 0 is only trivially valid for n<j+1. This also discovers another issue: sage: n = 20 sage: j = 5 sage: var('k') k sage: sum(binomial(n,k)*binomial(k-1,j)*(-1)**(k-1-j),k,j+1,n) TypeError: Either m or x-m must be an integer Because sage: binomial(x,3) 1/6*(x - 2)*(x - 1)*x sage: binomial(3,k) --------------------------------------------------------------------------- TypeError: Either m or x-m must be an integer Is this a bug? I would say yes, because sage: binomial(x,k) binomial(x, k) works, but maybe we want to have it be a specific integer if the top number is given? Any input? - kcrisman -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org