this report came in from the "report a problem" link for 4.1.1.

-------------------------

Sage gives an incorrect value when calculating a definite integral analytically:

sage: integrate(cos(x)^2 * (1 + sin(x)^2)^-3,x,0,pi/2)
21/64*pi*sqrt(2)
sage: _.n()
1.45782096408321

The correct answer is 7/64*pi*sqrt(2) = 0.48594. Sage gets this when
doing the integral numerically, or when going not quite to pi/2:

sage: numerical_integral(cos(x)^2 * (1 + sin(x)^2)^-3,0,pi/2)
(0.48594032136107129, 5.3950213336880916e-15)
sage: integrate(cos(x)^2 * (1 + sin(x)^2)^-3,x,0,pi/2-0.0001).n()
0.485940321361

The integrand is perfectly well-behaved at pi/2. The problem may be
related to the fact that the indefinite integral contains a term like
arctan(sqrt(2)*tan(x)), which is ill-defined at x=pi/2.

-------------------------

Harald

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send an email to sage-devel@googlegroups.com
To unsubscribe from this group, send an email to 
sage-devel-unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URL: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to