On Sun, May 3, 2009 at 3:59 AM, jyr <jyr2...@googlemail.com> wrote: > > Ok, here it is: > > ----------------------------------------------------------------------------------------------- > r""" > Calculate Wigner 3j, 6j, 9j, Clebsch-Gordan, Racah and Gaunt > coefficients > > Collection of functions for calculating er 3j, 6j, 9j, Clebsch-Gordan, > Racah as well as Gaunt coefficients exactly, all evaluating to a > rational number times the square root of a rational number [Rasch03]. > > Please see the description of the individual functions for further > details and examples. > > > REFERENCES: > > - [Rasch03] 'Efficient Storage Scheme for Precalculated Wigner 3j, 6j > and Gaunt Coefficients', J. Rasch and A. C. H. Yu, SIAM > J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)
Nice article. Is the C program, that you use in there available somewhere? I especially like the magic square, eq. 2-10. Indeed, the sum in each row or column is j1+j2+j3, it never occured to me the 3j symbols have the same symmetries at the magic square. Ondrej --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to sage-devel-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---