On Sun, May 3, 2009 at 3:59 AM, jyr <jyr2...@googlemail.com> wrote:
>
> Ok, here it is:
>
> -----------------------------------------------------------------------------------------------
> r"""
> Calculate Wigner 3j, 6j, 9j, Clebsch-Gordan, Racah and Gaunt
> coefficients
>
> Collection of functions for calculating er 3j, 6j, 9j, Clebsch-Gordan,
> Racah as well as Gaunt coefficients exactly, all evaluating to a
> rational number times the square root of a rational number [Rasch03].
>
> Please see the description of the individual functions for further
> details and examples.
>
>
> REFERENCES:
>
> - [Rasch03] 'Efficient Storage Scheme for Precalculated Wigner 3j, 6j
>  and Gaunt Coefficients', J. Rasch and A. C. H. Yu, SIAM
>  J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)


Nice article. Is the C program, that you use in there available somewhere?

I especially like the magic square, eq. 2-10. Indeed, the sum in each
row or column is j1+j2+j3, it never occured to me the 3j symbols have
the same symmetries at the magic square.


Ondrej

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to 
sage-devel-unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to