On Sun, May 3, 2009 at 9:23 AM, Dr. David Kirkby
<david.kir...@onetel.net> wrote:
>
> Here's a table of PrimePi[2^n], with n ranging from 0 to 47. It took
> roughly 20 minutes or so to compute the table.
>
> In[19]:= Table[{n,PrimePi[2^n]},{n,0,47}]
>
> Out[19]= {{0, 0}, {1, 1}, {2, 2}, {3, 4}, {4, 6}, {5, 11}, {6, 18}, {7, 31},
>
>  >    {8, 54}, {9, 97}, {10, 172}, {11, 309}, {12, 564}, {13, 1028},
>
>  >    {14, 1900}, {15, 3512}, {16, 6542}, {17, 12251}, {18, 23000},
>
>  >    {19, 43390}, {20, 82025}, {21, 155611}, {22, 295947}, {23, 564163},
>
>  >    {24, 1077871}, {25, 2063689}, {26, 3957809}, {27, 7603553},
>
>  >    {28, 14630843}, {29, 28192750}, {30, 54400028}, {31, 105097565},
>
>  >    {32, 203280221}, {33, 393615806}, {34, 762939111}, {35, 1480206279},
>
>  >    {36, 2874398515}, {37, 5586502348}, {38, 10866266172},
>
>  >    {39, 21151907950}, {40, 41203088796}, {41, 80316571436},
>
>  >    {42, 156661034233}, {43, 305761713237}, {44, 597116381732},
>
>  >    {45, 1166746786182}, {46, 2280998753949}, {47, 4461632979717}}
>

For the record, here's the same thing in Sage.  As you can see, it
took slightly less than 30 minutes on a macbook.

sage: time [[n, prime_pi(2^n)] for n in range(48)]
CPU times: user 1727.90 s, sys: 0.78 s, total: 1728.69 s
Wall time: 1737.05 s

[[0, 0],
 [1, 1],
 [2, 2],
 [3, 4],
 [4, 6],
 [5, 11],
 [6, 18],
 [7, 31],
 [8, 54],
 [9, 97],
 [10, 172],
 [11, 309],
 [12, 564],
 [13, 1028],
 [14, 1900],
 [15, 3512],
 [16, 6542],
 [17, 12251],
 [18, 23000],
 [19, 43390],
 [20, 82025],
 [21, 155611],
 [22, 295947],
 [23, 564163],
 [24, 1077871],
 [25, 2063689],
 [26, 3957809],
 [27, 7603553],
 [28, 14630843],
 [29, 28192750],
 [30, 54400028],
 [31, 105097565],
 [32, 203280221],
 [33, 393615806],
 [34, 762939111],
 [35, 1480206279],
 [36, 2874398515],
 [37, 5586502348],
 [38, 10866266172],
 [39, 21151907950],
 [40, 41203088796],
 [41, 80316571436],
 [42, 156661034233],
 [43, 305761713237],
 [44, 597116381732],
 [45, 1166746786182],
 [46, 2280998753949],
 [47, 4454203917918]]

And as mentioned before, the values up to 46 are correct, and the
value at 47 is wrong.

> PS, Mathematica computes PrimePi[some_negative_number] as 0. Does Sage
> handle that case ok?
>

sage: prime_pi(-20)
0


-- 
Alex Ghitza -- Lecturer in Mathematics -- The University of Melbourne
-- Australia -- http://www.ms.unimelb.edu.au/~aghitza/

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to 
sage-devel-unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to