Ondrej Certik wrote: > Hi, > > I would expect this to work: > > sage: e = integrate(sqrt(x**3+1), x, 2, 10) > sage: e.n() > --------------------------------------------------------------------------- > TypeError Traceback (most recent call last) > > /home/ondrej/<ipython console> in <module>() > > /home/ondrej/ext/sage-3.4.1.alpha0/local/lib/python2.5/site-packages/sage/calculus/calculus.pyc > in numerical_approx(self, prec, digits) > 1514 except TypeError: > 1515 # try to return a complex result > -> 1516 approx = self._complex_mpfr_field_(ComplexField(prec)) > 1517 > 1518 return approx > > /home/ondrej/ext/sage-3.4.1.alpha0/local/lib/python2.5/site-packages/sage/calculus/calculus.pyc > in _complex_mpfr_field_(self, field) > 1748 > 1749 def _complex_mpfr_field_(self, field): > -> 1750 raise TypeError > 1751 > 1752 def _complex_double_(self, C): > > TypeError: > > > > am I doing it the wrong way? With sympy: > > > sage: from sympy import var, integrate > sage: var("x") > x > sage: e = integrate(sqrt(x**3+1), (x, 2, 10)) > sage: e.n() > 124.616199194723 > >
You didn't do anything wrong. It should work. See http://trac.sagemath.org/sage_trac/ticket/3863 for the same error. This has also come up in discussion recently (see the end of http://groups.google.com/group/sage-support/browse_thread/thread/65e7983e80a983e9/2cdd45aff55425d2?lnk=gst&q=numerical_approx+integral#2cdd45aff55425d2) Of course, the work around is to use nintegrate. But I agree that what you did should work. So...does anyone have a patch? Jason -- Jason Grout --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to sage-devel-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---