On Thursday 15 January 2009, dmharvey wrote:
> On Jan 14, 5:41 pm, Bill Hart <goodwillh...@googlemail.com> wrote:
> > There's only one conclusion possible. The Schoenhage/Nussbaumer FFT
> > David has written in zn_poly for multiplication of polys over Z/pZ is
> > truly much better on Intel than the Kronecker Segmentation/Schoenhage-
> > Strassen FFT method used in FLINT.
>
> zn_poly does not use Schonhage/Nussbaumer for the modulus
> 140737488355328, because it is even.
>
> Also I assume Martin meant Z/140737488355328Z rather than GF
> (140737488355328) = GF(2^47).....

Sorry, I got my printing wrong, it is next_prime(2^47), see comment for

   http://trac.sagemath.org/sage_trac/ticket/4965

Martin

-- 
name: Martin Albrecht
_pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
_otr: 47F43D1A 5D68C36F 468BAEBA 640E8856 D7951CCF
_www: http://www.informatik.uni-bremen.de/~malb
_jab: martinralbre...@jabber.ccc.de


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to 
sage-devel-unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to