On Thursday 15 January 2009, dmharvey wrote: > On Jan 14, 5:41 pm, Bill Hart <goodwillh...@googlemail.com> wrote: > > There's only one conclusion possible. The Schoenhage/Nussbaumer FFT > > David has written in zn_poly for multiplication of polys over Z/pZ is > > truly much better on Intel than the Kronecker Segmentation/Schoenhage- > > Strassen FFT method used in FLINT. > > zn_poly does not use Schonhage/Nussbaumer for the modulus > 140737488355328, because it is even. > > Also I assume Martin meant Z/140737488355328Z rather than GF > (140737488355328) = GF(2^47).....
Sorry, I got my printing wrong, it is next_prime(2^47), see comment for http://trac.sagemath.org/sage_trac/ticket/4965 Martin -- name: Martin Albrecht _pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 _otr: 47F43D1A 5D68C36F 468BAEBA 640E8856 D7951CCF _www: http://www.informatik.uni-bremen.de/~malb _jab: martinralbre...@jabber.ccc.de --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to sage-devel-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---