-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1 Dear Simon,
> > But I think either the result is wrong or Singular has a bug: >> ideal J = I + x1^2 ; >> matrix(std(quotient(J,x3))) == matrix(std(J)); > 0 On my computer this line gives 1, and I am quite sure that this is correct. - --snip-- [EMAIL PROTECTED]:~$ /usr/local/sage/local/bin/Singular SINGULAR / Development A Computer Algebra System for Polynomial Computations / version 3-0-4 0< by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Nov 2007 FB Mathematik der Universitaet, D-67653 Kaiserslautern \ > ring R = 0,(x1,x2,x3,x4,x5),dp; > ideal I = x1*x4^2-x2*x5^2, . x1^3*x3^3-x2^4*x4^2, . x2*x4^8-x3^3*x5^6; > matrix(std(quotient(I,x3))) == matrix(std(quotient(I,x3))); 1 > ideal J = I + x1^2; > matrix(std(quotient(J,x3))) == matrix(std(quotient(J,x3))); 1 > quit . ; Auf Wiedersehen. - --snap-- > > Indeed, the quotient is bigger than J: >> NF(std(quotient(J,x3)),std(J)); > _[1]=0 > _[2]=0 > _[3]=0 > _[4]=0 > _[5]=0 > _[6]=0 > _[7]=0 > _[8]=0 > _[9]=x1*x3^2*x5^8 > _[10]=x2*x3^2*x5^10 > _[11]=x3^5*x5^16 >> NF(std(J),std(quotient(J,x3))); > _[1]=0 > _[2]=0 > _[3]=0 > _[4]=0 > _[5]=0 > _[6]=0 > _[7]=0 > _[8]=0 > _[9]=0 > _[10]=0 > _[11]=0 > > One note on the situation in Sage. > > There is a slightly simpler definition of R: > sage: R.<x1,x2,x3,x4,x5> = QQ[] > > For comparing the quotient, I don't know if by default it returns the > reduced Gröbner basis. If not, then it has to be done explicitly > before comparison. However, it wouldn't help here, because the ideals > are different (according to Singular, at least). > > Cheers, > Simon > > -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.9 (GNU/Linux) Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org iEYEARECAAYFAkk2WCoACgkQrpEWPKIUt7PalgCcCORDKly+4kJTTKuyKoinURHr l7IAn2X5jYRtplHBalG7qV1MvHrLXvnX =HEFU -----END PGP SIGNATURE----- --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---