-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Dear Simon,

> 
> But I think either the result is wrong or Singular has a bug:
>> ideal J = I + x1^2 ;
>> matrix(std(quotient(J,x3))) == matrix(std(J));
> 0

On my computer this line gives 1, and I am quite sure that this is correct.

- --snip--
[EMAIL PROTECTED]:~$ /usr/local/sage/local/bin/Singular
                     SINGULAR                             /  Development
 A Computer Algebra System for Polynomial Computations   /   version 3-0-4
                                                       0<
     by: G.-M. Greuel, G. Pfister, H. Schoenemann        \   Nov 2007
FB Mathematik der Universitaet, D-67653 Kaiserslautern    \
> ring R = 0,(x1,x2,x3,x4,x5),dp;
> ideal I = x1*x4^2-x2*x5^2,
. x1^3*x3^3-x2^4*x4^2,
. x2*x4^8-x3^3*x5^6;
> matrix(std(quotient(I,x3))) == matrix(std(quotient(I,x3)));
1
> ideal J = I + x1^2;
> matrix(std(quotient(J,x3))) == matrix(std(quotient(J,x3)));
1
> quit
. ;
Auf Wiedersehen.
- --snap--

> 
> Indeed, the quotient is bigger than J:
>> NF(std(quotient(J,x3)),std(J));
> _[1]=0
> _[2]=0
> _[3]=0
> _[4]=0
> _[5]=0
> _[6]=0
> _[7]=0
> _[8]=0
> _[9]=x1*x3^2*x5^8
> _[10]=x2*x3^2*x5^10
> _[11]=x3^5*x5^16
>> NF(std(J),std(quotient(J,x3)));
> _[1]=0
> _[2]=0
> _[3]=0
> _[4]=0
> _[5]=0
> _[6]=0
> _[7]=0
> _[8]=0
> _[9]=0
> _[10]=0
> _[11]=0
> 
> One note on the situation in Sage.
> 
> There is a slightly simpler definition of R:
> sage: R.<x1,x2,x3,x4,x5> = QQ[]
> 
> For comparing the quotient, I don't know if by default it returns the
> reduced Gröbner basis. If not, then it has to be done explicitly
> before comparison. However, it wouldn't help here, because the ideals
> are different (according to Singular, at least).
> 
> Cheers,
>       Simon
> 
> 
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.9 (GNU/Linux)
Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org

iEYEARECAAYFAkk2WCoACgkQrpEWPKIUt7PalgCcCORDKly+4kJTTKuyKoinURHr
l7IAn2X5jYRtplHBalG7qV1MvHrLXvnX
=HEFU
-----END PGP SIGNATURE-----

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to