Even, if that bug wouldn't exist, I can only recommend to do such computation over the rationals, if possible.
Gröbner bases and similar computations (like syzygies) over floating point numbers are very problematic: What is the leading term of a polynomial, where you can't exactly determine, which coefficient is zero. Michael On 31 Okt., 15:05, Martin Albrecht <[EMAIL PROTECTED]> wrote: > On Monday 27 October 2008, mmarco wrote: > > > R.<x,y,z>=PolynomialRing(CC) > > config2=(x^2+8*y^2+21*x*y-x*z-8*y*z)*(x^2+5*y^2+13*x*y- > > x*z-5*y*z)*(x^2+9*y^2-4*x*y-x*z-9*y*z)*(x^2+11*y^2+x*y- > > x*z-11*y*z)*(x^2+17*y^2-5*x*y-x*z-17*y*z) > > miid=R.ideal(diff(config2,x),diff(config2,y),diff(config2,z),config2) > > Hi, > > it seems Singular chokes on the scientific notation: > > sage: R.<x,y,z>=PolynomialRing(CC) > sage: f = 1.0*10^7 *x; f > 1.00000000000000e7*x > sage: f._singular_() > TypeError: Singular error: > ? error occurred in STDIN line 55: `def sage11=1.00000000000000e7*x;` > ? last reserved name was `def` > > It seems real numbers support a no_sci printing parameter but complex numbers > don't. > > Cheers, > Martin > > -- > name: Martin Albrecht > _pgp:http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 > _www:http://www.informatik.uni-bremen.de/~malb > _jab: [EMAIL PROTECTED] --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---