Even, if that bug wouldn't exist, I can only recommend
to do such computation over the rationals, if possible.

Gröbner bases and similar computations (like syzygies) over floating
point numbers are
very problematic: What is the leading term of a polynomial, where you
can't exactly determine, which coefficient is
zero.
Michael

On 31 Okt., 15:05, Martin Albrecht <[EMAIL PROTECTED]>
wrote:
> On Monday 27 October 2008, mmarco wrote:
>
> > R.<x,y,z>=PolynomialRing(CC)
> > config2=(x^2+8*y^2+21*x*y-x*z-8*y*z)*(x^2+5*y^2+13*x*y-
> > x*z-5*y*z)*(x^2+9*y^2-4*x*y-x*z-9*y*z)*(x^2+11*y^2+x*y-
> > x*z-11*y*z)*(x^2+17*y^2-5*x*y-x*z-17*y*z)
> > miid=R.ideal(diff(config2,x),diff(config2,y),diff(config2,z),config2)
>
> Hi,
>
> it seems Singular chokes on the scientific notation:
>
> sage: R.<x,y,z>=PolynomialRing(CC)
> sage: f = 1.0*10^7 *x; f
> 1.00000000000000e7*x
> sage: f._singular_()
> TypeError: Singular error:
>    ? error occurred in STDIN line 55: `def sage11=1.00000000000000e7*x;`
>    ? last reserved name was `def`
>
> It seems real numbers support a no_sci printing parameter but complex numbers
> don't.
>
> Cheers,
> Martin
>
> --
> name: Martin Albrecht
> _pgp:http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
> _www:http://www.informatik.uni-bremen.de/~malb
> _jab: [EMAIL PROTECTED]
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to