>
>        sage: from sage.symbolic.function import function
>        sage: var('r,kappa', ns=1)
>        (r, kappa)
>        sage: psi = function('psi', 1)(r); psi
>        psi(r)
>        sage: g = 1/r^2*(2*r*psi.diff(r,1) + r^2*psi.diff(r,2)); g
>        (2*psi(1,r)*r + psi(2,r)*r^2)*r^(-2)
>        sage: g.expand()
>        psi(2,r) + 2*psi(1,r)*r^(-1)
>        sage: g.coeff(psi.diff(r,2))
>        1
>        sage: g.coeff(psi.diff(r,1))
>        2*r^(-1)

I implemented the same interface to sympy:

http://code.google.com/p/sympy/issues/detail?id=979

In [1]: var('r, kappa')
Out[1]: (r, κ)

In [2]: psi = Function("psi")

In [3]: g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))

In [4]: g.coeff(psi(r).diff(r))
Out[4]:
2
─
r

In [5]: g.coeff(psi(r).diff(r, 2))
Out[5]: 1


It will be in the next release.

Ondrej

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to