> > sage: from sage.symbolic.function import function > sage: var('r,kappa', ns=1) > (r, kappa) > sage: psi = function('psi', 1)(r); psi > psi(r) > sage: g = 1/r^2*(2*r*psi.diff(r,1) + r^2*psi.diff(r,2)); g > (2*psi(1,r)*r + psi(2,r)*r^2)*r^(-2) > sage: g.expand() > psi(2,r) + 2*psi(1,r)*r^(-1) > sage: g.coeff(psi.diff(r,2)) > 1 > sage: g.coeff(psi.diff(r,1)) > 2*r^(-1)
I implemented the same interface to sympy: http://code.google.com/p/sympy/issues/detail?id=979 In [1]: var('r, kappa') Out[1]: (r, κ) In [2]: psi = Function("psi") In [3]: g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) In [4]: g.coeff(psi(r).diff(r)) Out[4]: 2 ─ r In [5]: g.coeff(psi(r).diff(r, 2)) Out[5]: 1 It will be in the next release. Ondrej --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---