Puzzle question: find a matrix with rank 0 but determinant 1: sage: type(M) <type 'sage.matrix.matrix_generic_dense.Matrix_generic_dense'> sage: M.rank() 0 sage: M.determinant() 1.00000000000000
Answer: M is 0x0: sage: M [] sage: [M.nrows(), M.ncols()] [0, 0] Now I am happy with all that (since I am computing regulators of elliptic curves which may have rank 0). And with this: sage: M.is_invertible() True but then disappointed by this: sage: M.inverse() --------------------------------------------------------------------------- IndexError Traceback (most recent call last) /home/john/sage-3.0.4/<ipython console> in <module>() /home/john/sage-3.0.4/matrix2.pyx in sage.matrix.matrix2.Matrix.inverse (sage/matrix/matrix2.c:19932)() /home/john/sage-3.0.4/matrix0.pyx in sage.matrix.matrix0.Matrix.__invert__ (sage/matrix/matrix0.c:14525)() /home/john/sage-3.0.4/matrix0.pyx in sage.matrix.matrix0.Matrix.__getitem__ (sage/matrix/matrix0.c:3129)() IndexError: matrix index out of range John --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---