That is *very* impressive!

John

2008/6/1 Daniel Bump <[EMAIL PROTECTED]>:
>
>
>> (hopefully with help from John Voight), and "Lie Algebras/Algebraic
>> Groups" as a new package.  For this last one I know that there are
>> several freely available packages (e.g. LIE), but I'm not sure if they
>> are actively maintained.
>
> Lie Algebras/Algebraic groups as a new package ... many of the things
> LiE does can now be done natively in Sage.
>
> I'll take this as a cue to advertise the fact that Sage now (as of
> 3.0.2) has nontrivial capability for Lie group/Lie algebra computations
> including computation of Weyl characters, weight multiplicities, tensor
> products and branching rules for characters, conjugation of roots and
> weights by Weyl group elements.
>
> For example, we can create the spin representation of Spin(7):
>
> sage: B3=WeylCharacterRing(['B',3])
> sage: spin=B3(B3.lattice().fundamental_weights()[2]); spin
> B3(1/2,1/2,1/2)
>
> Tensor it with itself and see how that decomposes into
> irreducibles:
>
> sage: spin*spin
> B3(0,0,0) + B3(1,0,0) + B3(1,1,0) + B3(1,1,1)
>
> Get the decomposition of that into weights:
>
> sage: b3=WeightRing(B3)
> sage: b3(spin*spin)
> b3(-1,-1,-1) + 2*b3(-1,-1,0) + b3(-1,-1,1) + 2*b3(-1,0,-1) +
> 4*b3(-1,0,0) + 2*b3(-1,0,1) + b3(-1,1,-1) + 2*b3(-1,1,0) + b3(-1,1,1) +
> 2*b3(0,-1,-1) + 4*b3(0,-1,0) + 2*b3(0,-1,1) + 4*b3(0,0,-1) +
> 8*b3(0,0,0) + 4*b3(0,0,1) + 2*b3(0,1,-1) + 4*b3(0,1,0) + 2*b3(0,1,1) +
> b3(1,-1,-1) + 2*b3(1,-1,0) + b3(1,-1,1) + 2*b3(1,0,-1) + 4*b3(1,0,0) +
> 2*b3(1,0,1) + b3(1,1,-1) + 2*b3(1,1,0) + b3(1,1,1)
>
> Restrict it to GL(3) embedded as a Levi subgroup in Spin(7):
>
> sage: (spin*spin).branch(A2,rule="levi")
> A2(-1,-1,-1) + 2*A2(0,-1,-1) + 3*A2(0,0,-1) + 4*A2(0,0,0) + A2(1,-1,-1)
> + 2*A2(1,0,-1) + 3*A2(1,0,0) + A2(1,1,-1) + 2*A2(1,1,0) + A2(1,1,1)
>
> Conjugate weights around using the Weyl group:
>
> sage: W = B3.lattice().weyl_group()
> sage: [s1,s2,s3]=W.simple_reflections()
> sage: s1*s2*s3
>
> [ 0  0 -1]
> [ 1  0  0]
> [ 0  1  0]
> sage: b3(1/2,1/2,1/2).weyl_group_action(s1*s2*s3)
> b3(-1/2,1/2,1/2)
>
> Dan
>
> >
>

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to