FWIW, “the competition” implements this : Wolfram Language 14.0.0 Engine for Linux x86 (64-bit) Copyright 1988-2023 Wolfram Research, Inc. In[1]:= A={{a0, a1}, {a2, a3}} Out[1]= {{a0, a1}, {a2, a3}} In[2]:= B={{b0, b1}, {b2, b3}} Out[2]= {{b0, b1}, {b2, b3}} In[3]:= A==B Out[3]= {{a0, a1}, {a2, a3}} == {{b0, b1}, {b2, b3}} In[4]:= Flatten[A] Out[4]= {a0, a1, a2, a3} In[5]:= Solve[A==B, Flatten[B]] Out[5]= {{b0 -> a0, b1 -> a1, b2 -> a2, b3 -> a3}} Le mardi 25 juin 2024 à 09:08:59 UTC+2, Emmanuel Charpentier a écrit :
> Inspired by this ask.sagemath question > <https://ask.sagemath.org/question/77986/with-symbolics-is-doing-unwanted-boolean-comparison/> > > : > sage: V=vector(var("v", n=2)) sage: W=vector(var("w", n=2)) sage: V==W > False > > This is expected from a (Python) programmer’s point of view, but the > mathematician could expect something like : > sage: from _operator import eq sage: vector(map(eq, V, W)) (v0 == w0, v1 > == w1) > > Similarly, > sage: A=matrix(var("a", n=4), nrows=2) sage: B=matrix(var("b", n=4), > nrows=2) sage: A==B False > > where > sage: matrix(map(lambda u, v:map(eq, u, v), A, B)) [a0 == b0 a1 == b1] [a2 > == b2 a3 == b3] > > could be expected. > > Are there (good or bad) reasons not to implement such vector/matrix > equalities ? > > -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/a1a40ecf-70f6-4327-90e0-8c00db2e2bebn%40googlegroups.com.