It looks as if Sage blindly runs is_homogeneous() - and this is not needed. Namely, after I get rid of these checks: -- a/src/sage/rings/polynomial/multi_polynomial_ideal.py +++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py @@ -3025,8 +3025,8 @@ class MPolynomialIdeal_singular_repr( sage: I.hilbert_series() # optional - sage.rings.number_field (t^4 + t^3 + t^2 + t + 1)/(t^2 - 2*t + 1) """ - if not self.is_homogeneous(): - raise TypeError("ideal must be homogeneous") +# if not self.is_homogeneous(): +# raise TypeError("ideal must be homogeneous")
if algorithm == 'sage': from sage.rings.polynomial.hilbert import hilbert_poincare_series @@ -3119,8 +3119,8 @@ class MPolynomialIdeal_singular_repr( True """ - if not self.is_homogeneous(): - raise TypeError("Ideal must be homogeneous.") +# if not self.is_homogeneous(): +# raise TypeError("Ideal must be homogeneous.") if algorithm == 'sage': from sage.rings.polynomial.hilbert import first_hilbert_series then at least I'm able to compute the numerator of the series, and the series itself, correctly: sage: T.<a,b>=QQ[] sage: I=T.ideal(a^2-b^3); sage: I.hilbert_numerator(grading=[3,2]) -t^6 + 1 sage: I.hilbert_series(grading=[3,2]) (t^2 - t + 1)/(-t + 1) (the latter looks wrong, but it's just the correct expression simplified sage: (1-t^6)/((1-t^3)*(1-t^2)) (-t^2 + t - 1)/(t - 1) On Thu, Jul 13, 2023 at 2:45 PM Dima Pasechnik <dimp...@gmail.com> wrote: > > On Tue, Jul 4, 2023 at 12:26 PM Kwankyu Lee <ekwan...@gmail.com> wrote: > > > > Also, as far as I understand, Sage can compute the minimal free resolution > > of > > the module of syzygies of S, and from the resolution the presentation can be > > assembled. > > > > > > Yes. It's here: > > https://doc.sagemath.org/html/en/reference/resolutions/index.html > > > > So it seems that the only missing bit is computation of a presentation of S. > > > > > > Let phi: R[y_1,...,y_k] -> R[x_1,...,x_n] mapping by y_i -> f_i. Then, > > perhaps, your I is the kernel of phi. > > in default grading, the generators of the kernel need not be homogeneous. > You need to grade y_i with degrees of f_i, for this to work correctly, > but Sage's PolynomialRing does not have such an > option, even though it is available in Singular (and in Macaulay2). > > E.g. in Singular: > $ ./sage --singular > ... > > ring T = 0, (a,b), dp; > > ideal I = a^2-b^3; // a toy example > > intvec iv = [3,2]; // degrees for a and b > > hilb(I,1,iv); > 1,0,0,0,0,0,-1,0 > > but in Sage: > > sage: T.<a,b>=QQ[] > sage: I=T.ideal(a^2-b^3); > sage: I.hilbert_series(grading=(3,2)) > --------------------------------------------------------------------------- > TypeError Traceback (most recent call last) > Cell In [5], line 1 > ----> 1 I.hilbert_series(grading=(Integer(3),Integer(2))) > > File > /mnt/opt/Sage/sage-dev/src/sage/rings/polynomial/multi_polynomial_ideal.py:300, > in RequireField.__call__(self, *args, **kwds) > 298 if not R.base_ring().is_field(): > 299 raise ValueError("Coefficient ring must be a field for > function '%s'."%(self.f.__name__)) > --> 300 return self.f(self._instance, *args, **kwds) > > File /mnt/opt/Sage/sage-dev/src/sage/rings/qqbar_decorators.py:96, in > handle_AA_and_QQbar.<locals>.wrapper(*args, **kwds) > 90 from sage.rings.abc import AlgebraicField_common > 92 if not any(isinstance(a, (Polynomial, MPolynomial, Ideal_generic)) > 93 and isinstance(a.base_ring(), AlgebraicField_common) > 94 or is_PolynomialSequence(a) > 95 and isinstance(a.ring().base_ring(), > AlgebraicField_common) for a in args): > ---> 96 return func(*args, **kwds) > 98 polynomials = [] > 100 for a in flatten(args, ltypes=(list, tuple, set)): > > File > /mnt/opt/Sage/sage-dev/src/sage/rings/polynomial/multi_polynomial_ideal.py:3029, > in MPolynomialIdeal_singular_repr.hilbert_series(self, grading, > algorithm) > 2955 r""" > 2956 Return the Hilbert series of this ideal. > 2957 > (...) > 3026 (t^4 + t^3 + t^2 + t + 1)/(t^2 - 2*t + 1) > 3027 """ > 3028 if not self.is_homogeneous(): > -> 3029 raise TypeError("ideal must be homogeneous") > 3031 if algorithm == 'sage': > 3032 from sage.rings.polynomial.hilbert import hilbert_poincare_series > > TypeError: ideal must be homogeneous > > > > > > > > > > > > > -- > > You received this message because you are subscribed to the Google Groups > > "sage-devel" group. > > To unsubscribe from this group and stop receiving emails from it, send an > > email to sage-devel+unsubscr...@googlegroups.com. > > To view this discussion on the web visit > > https://groups.google.com/d/msgid/sage-devel/6f50eeb6-9611-4a09-ad4d-8fff20875cb9n%40googlegroups.com. -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/CAAWYfq1TajTaC6gNLymr58F_t_MVaLkUd5ygjaTXnALeeoRTHA%40mail.gmail.com.