It looks as if Sage blindly runs is_homogeneous() - and this is not needed.
Namely, after I get rid of these checks:
-- a/src/sage/rings/polynomial/multi_polynomial_ideal.py
+++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py
@@ -3025,8 +3025,8 @@ class MPolynomialIdeal_singular_repr(
             sage: I.hilbert_series()
                                                  # optional -
sage.rings.number_field
             (t^4 + t^3 + t^2 + t + 1)/(t^2 - 2*t + 1)
         """
-        if not self.is_homogeneous():
-            raise TypeError("ideal must be homogeneous")
+#        if not self.is_homogeneous():
+#            raise TypeError("ideal must be homogeneous")

         if algorithm == 'sage':
             from sage.rings.polynomial.hilbert import hilbert_poincare_series
@@ -3119,8 +3119,8 @@ class MPolynomialIdeal_singular_repr(
             True

         """
-        if not self.is_homogeneous():
-            raise TypeError("Ideal must be homogeneous.")
+#        if not self.is_homogeneous():
+#            raise TypeError("Ideal must be homogeneous.")

         if algorithm == 'sage':
             from sage.rings.polynomial.hilbert import first_hilbert_series

then at least I'm able to compute the numerator of the series, and the
series itself, correctly:

sage: T.<a,b>=QQ[]
sage: I=T.ideal(a^2-b^3);
sage: I.hilbert_numerator(grading=[3,2])
-t^6 + 1
sage: I.hilbert_series(grading=[3,2])
(t^2 - t + 1)/(-t + 1)

(the latter looks wrong, but it's just the correct expression simplified
sage: (1-t^6)/((1-t^3)*(1-t^2))
(-t^2 + t - 1)/(t - 1)

On Thu, Jul 13, 2023 at 2:45 PM Dima Pasechnik <dimp...@gmail.com> wrote:
>
> On Tue, Jul 4, 2023 at 12:26 PM Kwankyu Lee <ekwan...@gmail.com> wrote:
> >
> > Also, as far as I understand, Sage can compute the minimal free resolution 
> > of
> > the module of syzygies of S, and from the resolution the presentation can be
> > assembled.
> >
> >
> > Yes. It's here: 
> > https://doc.sagemath.org/html/en/reference/resolutions/index.html
> >
> > So it seems that the only missing bit is computation of a presentation of S.
> >
> >
> > Let phi: R[y_1,...,y_k] -> R[x_1,...,x_n] mapping by y_i -> f_i. Then, 
> > perhaps, your I is the kernel of phi.
>
> in default grading, the generators of the kernel need not be homogeneous.
> You need to grade y_i with degrees of f_i, for this to work correctly,
> but Sage's PolynomialRing does not have such an
> option, even though it is available in Singular (and in Macaulay2).
>
> E.g. in Singular:
> $ ./sage --singular
> ...
> > ring T = 0, (a,b), dp;
> > ideal I = a^2-b^3; // a toy example
> > intvec iv = [3,2]; // degrees for a and b
> > hilb(I,1,iv);
> 1,0,0,0,0,0,-1,0
>
> but in Sage:
>
> sage: T.<a,b>=QQ[]
> sage: I=T.ideal(a^2-b^3);
> sage: I.hilbert_series(grading=(3,2))
> ---------------------------------------------------------------------------
> TypeError                                 Traceback (most recent call last)
> Cell In [5], line 1
> ----> 1 I.hilbert_series(grading=(Integer(3),Integer(2)))
>
> File 
> /mnt/opt/Sage/sage-dev/src/sage/rings/polynomial/multi_polynomial_ideal.py:300,
> in RequireField.__call__(self, *args, **kwds)
>     298 if not R.base_ring().is_field():
>     299     raise ValueError("Coefficient ring must be a field for
> function '%s'."%(self.f.__name__))
> --> 300 return self.f(self._instance, *args, **kwds)
>
> File /mnt/opt/Sage/sage-dev/src/sage/rings/qqbar_decorators.py:96, in
> handle_AA_and_QQbar.<locals>.wrapper(*args, **kwds)
>      90 from sage.rings.abc import AlgebraicField_common
>      92 if not any(isinstance(a, (Polynomial, MPolynomial, Ideal_generic))
>      93            and isinstance(a.base_ring(), AlgebraicField_common)
>      94            or is_PolynomialSequence(a)
>      95            and isinstance(a.ring().base_ring(),
> AlgebraicField_common) for a in args):
> ---> 96     return func(*args, **kwds)
>      98 polynomials = []
>     100 for a in flatten(args, ltypes=(list, tuple, set)):
>
> File 
> /mnt/opt/Sage/sage-dev/src/sage/rings/polynomial/multi_polynomial_ideal.py:3029,
> in MPolynomialIdeal_singular_repr.hilbert_series(self, grading,
> algorithm)
>    2955 r"""
>    2956 Return the Hilbert series of this ideal.
>    2957
>    (...)
>    3026     (t^4 + t^3 + t^2 + t + 1)/(t^2 - 2*t + 1)
>    3027 """
>    3028 if not self.is_homogeneous():
> -> 3029     raise TypeError("ideal must be homogeneous")
>    3031 if algorithm == 'sage':
>    3032     from sage.rings.polynomial.hilbert import hilbert_poincare_series
>
> TypeError: ideal must be homogeneous
>
>
>
>
>
>
>
> >
> >
> > --
> > You received this message because you are subscribed to the Google Groups 
> > "sage-devel" group.
> > To unsubscribe from this group and stop receiving emails from it, send an 
> > email to sage-devel+unsubscr...@googlegroups.com.
> > To view this discussion on the web visit 
> > https://groups.google.com/d/msgid/sage-devel/6f50eeb6-9611-4a09-ad4d-8fff20875cb9n%40googlegroups.com.

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/CAAWYfq1TajTaC6gNLymr58F_t_MVaLkUd5ygjaTXnALeeoRTHA%40mail.gmail.com.

Reply via email to