Currently in sage.rings.polynomial we have the following class hierarchy:
Polynomial Polynomial_dense_modn Polynomial_dense_modn_ntl_zz Polynomial_dense_modn_ntl_ZZ Polynomial_dense_modp The implementations are via some weird combination of direct NTL access and libs.ntl. Is there eventually supposed to be Polynomial_dense_modp_ntl_zz and Polynomial_dense_modp_ntl_ZZ as well? Currently, if I do PolynomialRing(Integers(7)), it's apparently implemented via ZZ_pX (via libs.ntl!), but if I do PolynomialRing(Integers(1000)), it's implemented via zz_pX. So we get weird things like: sage: R.<x> = PolynomialRing(Integers(7)) sage: f = R([ZZ.random_element() for _ in range(100)]) sage: timeit("g = f*f") 625 loops, best of 3: 168 µs per loop but: sage: R.<x> = PolynomialRing(Integers(100)) sage: f = R([ZZ.random_element() for _ in range(100)]) sage: timeit("g = f*f") 625 loops, best of 3: 26.2 µs per loop i.e. it's six times faster if the modulus is composite. david --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---