Currently in sage.rings.polynomial we have the following class  
hierarchy:

Polynomial
     Polynomial_dense_modn
         Polynomial_dense_modn_ntl_zz
         Polynomial_dense_modn_ntl_ZZ
         Polynomial_dense_modp

The implementations are via some weird combination of direct NTL  
access and libs.ntl.

Is there eventually supposed to be Polynomial_dense_modp_ntl_zz and  
Polynomial_dense_modp_ntl_ZZ as well? Currently, if I do  
PolynomialRing(Integers(7)), it's apparently implemented via ZZ_pX  
(via libs.ntl!), but if I do PolynomialRing(Integers(1000)), it's  
implemented via zz_pX. So we get weird things like:

sage: R.<x> = PolynomialRing(Integers(7))
sage: f = R([ZZ.random_element() for _ in range(100)])
sage: timeit("g = f*f")
625 loops, best of 3: 168 µs per loop

but:

sage: R.<x> = PolynomialRing(Integers(100))
sage: f = R([ZZ.random_element() for _ in range(100)])
sage: timeit("g = f*f")
625 loops, best of 3: 26.2 µs per loop

i.e. it's six times faster if the modulus is composite.

david


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to