I was preparing a talk on solving ODE's in sage, and the culminating example is pretty neat so I thought I would post it.
The following code will plot a little bit of the lorenz attractor sage: def lorenz(t,y,params): ... return [params[0]*(y[1]-y[0]),y[0]*(params[1]-y[2])- y[1],y[0]*y[1]-params[2]*y[2]] sage: def lorenz_jac(t,y,params): ... return [ [-params[0],params[0],0],[(params[1]-y[2]),-1,-y[0]], [y[1],y[0],-params[2]],[0,0,0]] sage: T=ode_solver() sage: T.algorithm="bsimp" sage: T.function=lorenz sage: T.jacobian=lorenz_jac sage: T.ode_solve(y_0=[. 5,.5,.5],t_span=[0,155],params=[10,40.5,3],num_points=4000) sage: l=[T.solution[i][1] for i in range(len(T.solution))] sage: line3d(l,thickness=2) This is somewhat computationally intensive (takes around a minute). I thought the plot was quite neat. --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---