> I am very surprized that I.groebner_basis() does not return an ideal.
I don't think it should give back an ideal since a Grobner basis is a particular basis for an ideal (particularly the one you started with). sage: R.<a,b,c,d> = PolynomialRing(QQ) sage: I = R.ideal(a*b-1, c*d-1) sage: J = R.ideal(I.groebner_basis()) sage: I == J True --Mike P.S. It is better not to use strings everywhere but instead use the actual variables. > Is it really needed to say: > sage: J=R.ideal(I.groebner_basis()) > sage: type(J) > <class > 'sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal'> > > This looks strange to me (close to a bug). > > Yours > Simon > > > > --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---