Hi folks, Gamma_H(N) are SL_2(Z) matrices where the lower left entry is congruent to 0 mod N, and the upper left and lower right entries are elements of a specified subgroup H of (Z/N)^*.
Sage raises an exception when computing ModularSymbols for the congruence subgroup Gamma_H(N) of weight 2. Is this a bug? Regards, Ifti === sage: G = GammaH(36, [13,19]) sage: MS = ModularSymbols(G) --------------------------------------------------------------------------- <type 'exceptions.AssertionError'> Traceback (most recent call last) /home/burhanud/<ipython console> in <module>() /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/modsym.py in ModularSymbols(group, weight, sign, base_ring, use_cache) 226 elif congroup.is_GammaH(group): 227 --> 228 M = ambient.ModularSymbolsAmbient_wtk_gamma_h(group, weight, sign, base_ring) 229 230 elif isinstance(group, tuple): /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py in __init__(self, group, weight, sign, F) 1756 ModularSymbolsAmbient.__init__(self, 1757 weight=weight, group=group, -> 1758 sign=sign, base_ring=F) 1759 1760 def _dimension_formula(self): /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py in __init__(self, group, weight, sign, base_ring, character) 116 except NotImplementedError: 117 formula = None --> 118 rank = self.rank() 119 if formula != None: 120 assert rank == formula, \ /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py in rank(self) 850 return self.__rank 851 except AttributeError: --> 852 self.__rank = len(self.manin_basis()) 853 return self.__rank 854 /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py in manin_basis(self) 179 return self._manin_basis 180 except AttributeError: --> 181 self.compute_presentation() 182 return self._manin_basis 183 /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py in compute_presentation(self) 195 B, basis, mod = relation_matrix.compute_presentation( 196 self.manin_symbols(), self.sign(), --> 197 self.base_ring(), self.weight()) 198 self._manin_generators = self.manin_symbols().manin_symbol_list() 199 self._manin_basis = basis /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/relation_matrix.py in compute_presentation(syms, sign, field, weight, sparse) 329 else: 330 sparse = True --> 331 R, mod = relation_matrix_wtk_g0(syms, sign, field, weight, sparse) 332 B, basis = gens_to_basis_matrix(syms, R, mod, field, sparse) 333 return B, basis, mod /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/relation_matrix.py in relation_matrix_wtk_g0(syms, sign, field, weight, sparse) 334 335 def relation_matrix_wtk_g0(syms, sign, field, weight, sparse): --> 336 rels = modS_relations(syms) 337 if sign != 0: 338 # Let rels = rels union I relations. /home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/relation_matrix.py in modS_relations(syms) 99 for i in xrange(len(syms)): 100 j, s = syms.apply_S(i) --> 101 assert j != -1 102 if i < j: 103 rels.add( ((i,1),(j,s)) ) <type 'exceptions.AssertionError'>: --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/ -~----------~----~----~----~------~----~------~--~---