Hi folks,

Gamma_H(N) are SL_2(Z) matrices where the lower left entry is
congruent to 0 mod N, and the upper left and lower right entries are
elements of a specified subgroup H of (Z/N)^*.

Sage raises an exception when computing ModularSymbols for the congruence
subgroup Gamma_H(N) of weight 2. Is this a bug?

Regards,
Ifti
===
sage: G = GammaH(36, [13,19])

sage: MS = ModularSymbols(G)
---------------------------------------------------------------------------
<type 'exceptions.AssertionError'>        Traceback (most recent call
last)

/home/burhanud/<ipython console> in <module>()

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/modsym.py
in ModularSymbols(group, weight, sign, base_ring, use_cache)
    226     elif congroup.is_GammaH(group):
    227
--> 228         M = ambient.ModularSymbolsAmbient_wtk_gamma_h(group,
weight, sign, base_ring)
    229
    230     elif isinstance(group, tuple):

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py
in __init__(self, group, weight, sign, F)
   1756         ModularSymbolsAmbient.__init__(self,
   1757                 weight=weight, group=group,
-> 1758                 sign=sign, base_ring=F)
   1759
   1760     def _dimension_formula(self):

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py
in __init__(self, group, weight, sign, base_ring, character)
    116         except NotImplementedError:
    117             formula = None
--> 118         rank = self.rank()
    119         if formula != None:
    120             assert rank == formula, \

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py
in rank(self)
    850             return self.__rank
    851         except AttributeError:
--> 852             self.__rank = len(self.manin_basis())
    853         return self.__rank
    854

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py
in manin_basis(self)
    179             return self._manin_basis
    180         except AttributeError:
--> 181             self.compute_presentation()
    182         return self._manin_basis
    183

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/ambient.py
in compute_presentation(self)
    195         B, basis, mod = relation_matrix.compute_presentation(
    196                 self.manin_symbols(), self.sign(),
--> 197                 self.base_ring(), self.weight())
    198         self._manin_generators =
self.manin_symbols().manin_symbol_list()
    199         self._manin_basis = basis

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/relation_matrix.py
in compute_presentation(syms, sign, field, weight, sparse)
    329         else:
    330             sparse = True
--> 331     R, mod = relation_matrix_wtk_g0(syms, sign, field, weight,
sparse)
    332     B, basis = gens_to_basis_matrix(syms, R, mod, field, sparse)
    333     return B, basis, mod

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/relation_matrix.py
in relation_matrix_wtk_g0(syms, sign, field, weight, sparse)
    334
    335 def relation_matrix_wtk_g0(syms, sign, field, weight, sparse):
--> 336     rels = modS_relations(syms)
    337     if sign != 0:
    338         # Let rels = rels union I relations.

/home/was/s/local/lib/python2.5/site-packages/sage/modular/modsym/relation_matrix.py
in modS_relations(syms)
     99     for i in xrange(len(syms)):
    100         j, s = syms.apply_S(i)
--> 101         assert j != -1
    102         if i < j:
    103             rels.add( ((i,1),(j,s)) )

<type 'exceptions.AssertionError'>:



--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to