I stumbled over #262

  http://trac.sagemath.org/sage_trac/ticket/262

again. Here Graeme Taylor proposes his implementation of point counting of 
elliptic curves over GF(p^n) with coefficients in GF(p) in Weierstrass form.  

He describes the background at:

  http://maths.straylight.co.uk/archives/69

. This was turned down because a patch by Alex Ghitza 

  http://www.sagemath.org/hg/sage-main/rev/57bc9076e61a

implements the same functionality. I can see that this implements the same 
functionality but I find the interface rather complicated: The user is 
required to construct the curve over the prime subfield and ask for the 
cardinality over a higher degree extension via an optional 
parameter 'degree'. E.g.

sage: k.<a> = GF(7^10)
sage: E = EllipticCurve(k,[5,2])
sage: E2 = EllipticCurve(k.base_ring(), E.a_invariants()) # down
sage: E2.cardinality(10) # and up again
282464343

I wonder why not just compute the cardinality using this method by default if 
all coefficients lie in the prime subfield? Is this optional 'degree' 
parameter really necessary?

Just curious,
Martin

-- 
name: Martin Albrecht
_pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
_www: http://www.informatik.uni-bremen.de/~malb
_jab: [EMAIL PROTECTED]


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to