The eigen routine uses numpy. If you do p,e=m.eigen() then p is an array of eigenvalues and e is a matrix whose columns are eigenvectors. The documentation works fine in my local install not sure why it fails on sage.math
Josh On Aug 3, 2:43 pm, Robert Bradshaw <[EMAIL PROTECTED]> wrote: > Linear algebra over RR is generic and, in many cases, really bad so > far. Use RDF or even scipy unless you really need arbitrary > precision. (If the RDF interface is inconsistent, fix it and send a > patch :-) > > - Robert > > On Aug 1, 2007, at 6:28 AM, Robert Miller wrote: > > > > > Hi everyone, > > > I have a symmetric square matrix of real numbers, and I wish to > > compute the (necessarily) real eigenvalues of this matrix. > > > sage: version() > > 'SAGE Version 2.7.2, Release Date: 2007-07-28' > > > sage: M = random_matrix(RDF, 4, 4) > > sage: M += M.transpose() > > > Now M is such a matrix. My first instinct was to try 'eigenspaces': > > > sage: M.eigenspaces() > > Exception (click to the left for traceback): > > ... > > NotImplementedError > > > So I then tried using RR instead of RDF, and often I was getting > > variables in the eigenvalues. The example is no longer symmetric, and > > I suspect this might be why: > > > sage: M = random_matrix(RR, 4, 4) > > sage: M.eigenspaces() > > [ > > (-0.687210648633541, []), > > (0.251596873005605, []), > > (1.00000000000000*a2, []) > > ] > > > Wouldn't it be better to return the complex eigenvalues? > > > When I went back to RDF, I was surprised by the function eigen, which > > seems to be doing exactly what I want: > > > sage: M = random_matrix(RDF, 4, 4) > > sage: M += M.transpose() > > sage: M.eigen() > > ([2.83698656526, 1.12513535857, -1.92195925813, -0.781971696103], > > [ -0.685785481323 0.676886167426 -0.249484727275 > > -0.0963367054158] > > [ 0.171856298084 -0.00520796932156 -0.108449572475 > > -0.97912051357] > > [ 0.704671991219 0.683316875186 -0.135215217363 > > 0.135026952387] > > [ 0.0600089260487 -0.273634868922 -0.952739684321 > > 0.117515876478]) > > > However, the output is a little confusing-- I'm guessing either the > > columns or rows of the matrix are the eigenvectors. So I check the > > documentation (this is on sagenb.org): > > > sage: M.eigen? > > Traceback (most recent call last): > > File "<stdin>", line 1, in <module> > > File "/home/server2/nb1/sage_notebook/worksheets/rlmill/0/code/ > > 50.py", line 4, in <module> > > print _support_.docstring("M.eigen", globals()) > > File "/usr/local/sage-2.6/local/lib/python2.5/site-packages/sage/ > > server/support.py", line 142, in docstring > > s += 'Definition: %s\n'%sageinspect.sage_getdef(obj, obj_name) > > File "/usr/local/sage-2.6/local/lib/python2.5/site-packages/sage/ > > misc/sageinspect.py", line 267, in sage_getdef > > spec = sage_getargspec(obj) > > File "/usr/local/sage-2.6/local/lib/python2.5/site-packages/sage/ > > misc/sageinspect.py", line 252, in sage_getargspec > > args, varargs, varkw = inspect.getargs(func_obj.func_code) > > UnboundLocalError: local variable 'func_obj' referenced before > > assignment > > > I have absolutely no idea what to make of this. > > > -R Miller --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/ -~----------~----~----~----~------~----~------~--~---