dejankrak-db commented on code in PR #49772:
URL: https://github.com/apache/spark/pull/49772#discussion_r1953334190


##########
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/ResolveDDLCommandStringTypes.scala:
##########
@@ -18,80 +18,48 @@
 package org.apache.spark.sql.catalyst.analysis
 
 import org.apache.spark.sql.catalyst.expressions.{Cast, Expression, Literal}
-import org.apache.spark.sql.catalyst.plans.logical.{AddColumns, AlterColumns, 
AlterColumnSpec, AlterViewAs, ColumnDefinition, CreateView, LogicalPlan, 
QualifiedColType, ReplaceColumns, V1CreateTablePlan, V2CreateTablePlan}
-import org.apache.spark.sql.catalyst.rules.{Rule, RuleExecutor}
+import org.apache.spark.sql.catalyst.plans.logical.{AddColumns, AlterColumns, 
AlterColumnSpec, AlterTableCommand, AlterViewAs, ColumnDefinition, CreateTable, 
CreateView, LogicalPlan, QualifiedColType, ReplaceColumns, V1CreateTablePlan, 
V2CreateTablePlan}
+import org.apache.spark.sql.catalyst.rules.Rule
+import org.apache.spark.sql.connector.catalog.TableCatalog
 import org.apache.spark.sql.types.{DataType, StringType}
 
 /**
- * Resolves default string types in queries and commands. For queries, the 
default string type is
- * determined by the session's default string type. For DDL, the default 
string type is the
- * default type of the object (table -> schema -> catalog). However, this is 
not implemented yet.
- * So, we will just use UTF8_BINARY for now.
+ * Resolves string types in DDL commands, where the string type inherits the
+ * collation from the corresponding object (table/view -> schema -> catalog).
  */
-object ResolveDefaultStringTypes extends Rule[LogicalPlan] {
+object ResolveDDLCommandStringTypes extends Rule[LogicalPlan] {
   def apply(plan: LogicalPlan): LogicalPlan = {
-    val newPlan = apply0(plan)
-    if (plan.ne(newPlan)) {
-      // Due to how tree transformations work and StringType object being 
equal to
-      // StringType("UTF8_BINARY"), we need to transform the plan twice
-      // to ensure the correct results for occurrences of default string type.
-      val finalPlan = apply0(newPlan)
-      RuleExecutor.forceAdditionalIteration(finalPlan)
-      finalPlan
-    } else {
-      newPlan
-    }
-  }
-
-  private def apply0(plan: LogicalPlan): LogicalPlan = {
     if (isDDLCommand(plan)) {
       transformDDL(plan)
     } else {
-      transformPlan(plan, sessionDefaultStringType)
+      // For non-DDL commands no need to do any further resolution of string 
types
+      plan
     }
   }
 
-  /**
-   * Returns whether any of the given `plan` needs to have its
-   * default string type resolved.
-   */
-  def needsResolution(plan: LogicalPlan): Boolean = {
-    if (!isDDLCommand(plan) && isDefaultSessionCollationUsed) {
-      return false
+  /** Default collation used, if object level collation is not provided */
+  private def defaultCollation: String = "UTF8_BINARY"
+
+  /** Returns the string type that should be used in a given DDL command */
+  private def stringTypeForDDLCommand(table: LogicalPlan): StringType = {
+    table match {
+      case createTable: CreateTable if 
createTable.tableSpec.collation.isDefined =>
+        StringType(createTable.tableSpec.collation.get)
+      case createView: CreateView if createView.collation.isDefined =>
+        StringType(createView.collation.get)
+      case alterTable: AlterTableCommand if alterTable.table.resolved =>
+        val collation = Option(alterTable
+          .table.asInstanceOf[ResolvedTable]
+          .table.properties.get(TableCatalog.PROP_COLLATION))
+        if (collation.isDefined) {
+          StringType(collation.get)
+        } else {
+          StringType(defaultCollation)
+        }
+      case _ => StringType(defaultCollation)

Review Comment:
   Actually, good catch - I figured out that v1 CREATE TABLE is not covered 
here, and we cannot reference it in the same way as v2 CreateTable above, given 
that it is defined in ddl.scala in core.
   For that reason, as part of the original change, we have added trait 
V1CreateTablePlan, to be able to identify logical plan nodes that create V1 
table definitions in catalyst rules such as this one.
   Perhaps we can add collation inside V1CreateTablePlan trait and set it 
accordingly from v1 CreateTable command, in order to be able to fetch table 
level collation later on from our rule? What do you think?



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to