szehon-ho opened a new pull request, #49840: URL: https://github.com/apache/spark/pull/49840
### What changes were proposed in this pull request? Simplify the resolution of EXISTS_DEFAULT on ResolveDefaultColumns::getExistenceDefaultValues(), which are called from file readers ### Why are the changes needed? Spark executors unnecessary contacts catalogs when resolving EXISTS_DEFAULTS (used for default values for existing data) Detailed explanation: The code path for default values first runs an analysis of the user-provided CURRENT_DEFAULT(to evaluate functions, etc) , and uses the result sql for EXISTS_DEFAULT. EXISTS_DEFAULT is saved in order to avoid having to rewrite existing data using backfill to fill this value in the files. When reading existing files, Spark then attempts to resolve the EXISTS_DEFAULT metadata and use the value for null values it finds in that column. But this step redundantly runs all the analyzer rules again and finish analysis rules, some of which contact the catalog unnecessarily. This may cause exceptions if the executors are not configured properly to reach the catalog, such as: ``` Caused by: org.apache.spark.SparkException: Failed during instantiating constructor for catalog 'spark_catalog': org.apache.spark.sql.delta.catalog.DeltaCatalog. at org.apache.spark.sql.errors.QueryExecutionErrors$.failedToInstantiateConstructorForCatalogError(QueryExecutionErrors.scala:2400) at org.apache.spark.sql.connector.catalog.Catalogs$.load(Catalogs.scala:84) at org.apache.spark.sql.connector.catalog.CatalogManager.loadV2SessionCatalog(CatalogManager.scala:72) at org.apache.spark.sql.connector.catalog.CatalogManager.$anonfun$v2SessionCatalog$2(CatalogManager.scala:94) at scala.collection.mutable.HashMap.getOrElseUpdate(HashMap.scala:86) at org.apache.spark.sql.connector.catalog.CatalogManager.$anonfun$v2SessionCatalog$1(CatalogManager.scala:94) at scala.Option.map(Option.scala:230) at org.apache.spark.sql.connector.catalog.CatalogManager.v2SessionCatalog(CatalogManager.scala:93) at org.apache.spark.sql.connector.catalog.CatalogManager.catalog(CatalogManager.scala:55) at or g.apache.spark.sql.connector.catalog.CatalogManager.currentCatalog(CatalogManager.scala:130) at org.apache.spark.sql.connector.catalog.CatalogManager.currentNamespace(CatalogManager.scala:101) at org.apache.spark.sql.catalyst.optimizer.ReplaceCurrentLike.apply(finishAnalysis.scala:172) at org.apache.spark.sql.catalyst.optimizer.ReplaceCurrentLike.apply(finishAnalysis.scala:169) at org.apache.spark.sql.catalyst.optimizer.Optimizer$FinishAnalysis$.$anonfun$apply$1(Optimizer.scala:502) at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) at scala.collection.immutable.List.foldLeft(List.scala:91) at org.apache.spark.sql.catalyst.optimizer.Optimizer$FinishAnalysis$.apply(Optimizer.scala:502) at org.apache.spark.sql.catalyst.util.ResolveDefaultColumns$.analyze(ResolveDefaultColumnsUtil.scala:301) at org.apache.spark.sql.catalyst.util.ResolveDefaultColumns$.analyze(ResolveDefaultColumnsU til.scala:266) at org.apache.spark.sql.catalyst.util.ResolveDefaultColumns$.$anonfun$getExistenceDefaultValues$2(ResolveDefaultColumnsUtil.scala:427) at scala.Option.map(Option.scala:230) at org.apache.spark.sql.catalyst.util.ResolveDefaultColumns$.$anonfun$getExistenceDefaultValues$1(ResolveDefaultColumnsUtil.scala:425) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198) at scala.collection.TraversableLike.map(TraversableLike.scala:286) at scala.collection.TraversableLike.map$(TraversableLike.scala:279) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:198) at org.apache.spark.sql.catalyst.util.ResolveDefaultColumns$.getExistenceDefaultValues(ResolveDefaultColumnsUtil.scala:423) at org.apache.spark.sql.catalyst.util.Reso lveDefaultColumns$.$anonfun$existenceDefaultValues$2(ResolveDefaultColumnsUtil.scala:498) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.sql.catalyst.util.ResolveDefaultColumns$.existenceDefaultValues(ResolveDefaultColumnsUtil.scala:496) at org.apache.spark.sql.catalyst.util.ResolveDefaultColumns.existenceDefaultValues(ResolveDefaultColumnsUtil.scala) at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.initBatch(VectorizedParquetRecordReader.java:350) at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.initBatch(VectorizedParquetRecordReader.java:373) at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anon$1.$anonfun$apply$5(ParquetFileFormat.scala:441) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1561) at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anon$1.apply(ParquetFileFormat.scala:428) at org.apache.spark.sql.execu tion.datasources.parquet.ParquetFileFormat$$anon$1.apply(ParquetFileFormat.scala:258) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anon$2.getNext(FileScanRDD.scala:639) ... 21 more Caused by: java.lang.IllegalStateException: No active or default Spark session found ``` ### Does this PR introduce _any_ user-facing change? No ### How was this patch tested? Added a test in StructTypeSuite. I had to expose for testing some members in ResolveDefaultColumns. ### Was this patch authored or co-authored using generative AI tooling? No -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org