itholic commented on code in PR #47145: URL: https://github.com/apache/spark/pull/47145#discussion_r1678866930
########## python/docs/source/development/logger.rst: ########## @@ -0,0 +1,151 @@ +.. Licensed to the Apache Software Foundation (ASF) under one + or more contributor license agreements. See the NOTICE file + distributed with this work for additional information + regarding copyright ownership. The ASF licenses this file + to you under the Apache License, Version 2.0 (the + "License"); you may not use this file except in compliance + with the License. You may obtain a copy of the License at + +.. http://www.apache.org/licenses/LICENSE-2.0 + +.. Unless required by applicable law or agreed to in writing, + software distributed under the License is distributed on an + "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + KIND, either express or implied. See the License for the + specific language governing permissions and limitations + under the License. + +================== +Logging in PySpark +================== + +.. currentmodule:: pyspark.logger + +Introduction +============ + +The :ref:`pyspark.logger</reference/pyspark.logger.rst>` module facilitates structured client-side logging for PySpark users. + +This module includes a :class:`PySparkLogger` class that provides several methods for logging messages at different levels in a structured JSON format: + +- :meth:`PySparkLogger.log_info` +- :meth:`PySparkLogger.log_warn` +- :meth:`PySparkLogger.log_error` + +The logger can be easily configured to write logs to either the console or a specified file. + +Customizing Log Format +====================== +The default log format is JSON, which includes the timestamp, log level, logger name, and the log message along with any additional context provided. + +Example log entry: + +.. code-block:: python + + { + "ts": "2024-06-28T10:53:48.528Z", + "level": "ERROR", + "logger": "DataFrameQueryContextLogger", + "msg": "[DIVIDE_BY_ZERO] Division by zero.", + "context": { + "file": "/path/to/file.py", Review Comment: @gengliangwang Just updated PR. Now the log will include `exception` field as below when error occurs: ```json { "ts": "2024-06-28 19:53:48,563", "level": "ERROR", "logger": "DataFrameQueryContextLogger", "msg": "[DIVIDE_BY_ZERO] Division by zero. Use `try_divide` to tolerate divisor being 0 and return NULL instead. If necessary set \"spark.sql.ansi.enabled\" to \"false\" to bypass this error. SQLSTATE: 22012\n== DataFrame ==\n\"__truediv__\" was called from\n/.../spark/python/test_error_context.py:17\n", "context": { "file": "/.../spark/python/test_error_context.py", "line_no": "17", "fragment": "__truediv__" "error_class": "DIVIDE_BY_ZERO" }, "exception": { "class": "Py4JJavaError", "msg": "An error occurred while calling o52.showString.\n: org.apache.spark.SparkArithmeticException: [DIVIDE_BY_ZERO] Division by zero. Use `try_divide` to tolerate divisor being 0 and return NULL instead. If necessary set \"spark.sql.ansi.enabled\" to \"false\" to bypass this error. SQLSTATE: 22012\n== DataFrame ==\n\"__truediv__\" was called from\n/Users/haejoon.lee/Desktop/git_repos/spark/python/test_error_context.py:22\n\n\tat org.apache.spark.sql.errors.QueryExecutionErrors$.divideByZeroError(QueryExecutionErrors.scala:203)\n\tat org.apache.spark.sql.errors.QueryExecutionErrors.divideByZeroError(QueryExecutionErrors.scala)\n\tat org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.project_doConsume_0$(Unknown Source)\n\tat org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)\n\tat org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)\n \tat org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:50)\n\tat org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)\n\tat org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:896)\n\tat org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:896)\n\tat org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)\n\tat org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:369)\n\tat org.apache.spark.rdd.RDD.iterator(RDD.scala:333)\n\tat org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)\n\tat org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:171)\n\tat org.apache.spark.scheduler.Task.run(Task.scala:146)\n\tat org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$5(Executor.scala:644)\n\tat org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkE rrorUtils.scala:64)\n\tat org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)\n\tat org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:99)\n\tat org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:647)\n\tat java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)\n\tat java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)\n\tat java.base/java.lang.Thread.run(Thread.java:840)\n\tat org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1007)\n\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2458)\n\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2479)\n\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2498)\n\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2523)\n\tat org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1052)\n\tat org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala :151)\n\tat org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)\n\tat org.apache.spark.rdd.RDD.withScope(RDD.scala:412)\n\tat org.apache.spark.rdd.RDD.collect(RDD.scala:1051)\n\tat org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:448)\n\tat org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:4449)\n\tat org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:3393)\n\tat org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4439)\n\tat org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:599)\n\tat org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4437)\n\tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId0$6(SQLExecution.scala:154)\n\tat org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:263)\n\tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId0$1(SQLExecution.scala:118)\n\tat org. apache.spark.sql.SparkSession.withActive(SparkSession.scala:923)\n\tat org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId0(SQLExecution.scala:74)\n\tat org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:218)\n\tat org.apache.spark.sql.Dataset.withAction(Dataset.scala:4437)\n\tat org.apache.spark.sql.Dataset.head(Dataset.scala:3393)\n\tat org.apache.spark.sql.Dataset.take(Dataset.scala:3626)\n\tat org.apache.spark.sql.Dataset.getRows(Dataset.scala:294)\n\tat org.apache.spark.sql.Dataset.showString(Dataset.scala:330)\n\tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)\n\tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77)\n\tat java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)\n\tat java.base/java.lang.reflect.Method.invoke(Method.java:568)\n\tat py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)\ n\tat py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)\n\tat py4j.Gateway.invoke(Gateway.java:282)\n\tat py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)\n\tat py4j.commands.CallCommand.execute(CallCommand.java:79)\n\tat py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)\n\tat py4j.ClientServerConnection.run(ClientServerConnection.java:106)\n\tat java.base/java.lang.Thread.run(Thread.java:840)\n", "stacktrace": ["Traceback (most recent call last):", " File \"/Users/haejoon.lee/Desktop/git_repos/spark/python/pyspark/errors/exceptions/captured.py\", line 272, in deco", " return f(*a, **kw)", " File \"/Users/haejoon.lee/anaconda3/envs/pyspark-dev-env/lib/python3.9/site-packages/py4j/protocol.py\", line 326, in get_return_value", " raise Py4JJavaError(", "py4j.protocol.Py4JJavaError: An error occurred while calling o52.showString.", ": org.apache.spark.SparkArithmeticException: [DIVIDE_BY_ZERO] Division by zero. Use `try_divide` to tolerate divisor being 0 and return NULL instead. If necessary set \"spark.sql.ansi.enabled\" to \"false\" to bypass this error. SQLSTATE: 22012", "== DataFrame ==", "\"__truediv__\" was called from", "/Users/haejoon.lee/Desktop/git_repos/spark/python/test_error_context.py:22", "", "\tat org.apache.spark.sql.errors.QueryExecutionErrors$.divideByZeroError(QueryExecutionErrors.scala:203)", "\tat org.apache.spark.sql.errors.QueryExecutionErr ors.divideByZeroError(QueryExecutionErrors.scala)", "\tat org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.project_doConsume_0$(Unknown Source)", "\tat org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)", "\tat org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)", "\tat org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:50)", "\tat org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)", "\tat org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:896)", "\tat org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:896)", "\tat org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)", "\tat org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:369) ", "\tat org.apache.spark.rdd.RDD.iterator(RDD.scala:333)", "\tat org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)", "\tat org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:171)", "\tat org.apache.spark.scheduler.Task.run(Task.scala:146)", "\tat org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$5(Executor.scala:644)", "\tat org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)", "\tat org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)", "\tat org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:99)", "\tat org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:647)", "\tat java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)", "\tat java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)", "\tat java.base/java.lang.Thread.run(Thread.java:840)", "\tat org.apache.spark.scheduler.DAGScheduler.r unJob(DAGScheduler.scala:1007)", "\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2458)", "\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2479)", "\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2498)", "\tat org.apache.spark.SparkContext.runJob(SparkContext.scala:2523)", "\tat org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1052)", "\tat org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)", "\tat org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)", "\tat org.apache.spark.rdd.RDD.withScope(RDD.scala:412)", "\tat org.apache.spark.rdd.RDD.collect(RDD.scala:1051)", "\tat org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:448)", "\tat org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:4449)", "\tat org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:3393)", "\tat org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4439)", "\tat org.apache. spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:599)", "\tat org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4437)", "\tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId0$6(SQLExecution.scala:154)", "\tat org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:263)", "\tat org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId0$1(SQLExecution.scala:118)", "\tat org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:923)", "\tat org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId0(SQLExecution.scala:74)", "\tat org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:218)", "\tat org.apache.spark.sql.Dataset.withAction(Dataset.scala:4437)", "\tat org.apache.spark.sql.Dataset.head(Dataset.scala:3393)", "\tat org.apache.spark.sql.Dataset.take(Dataset.scala:3626)", "\tat org.apache.spark.sql.Dataset.getRows(Dataset.scala:294 )", "\tat org.apache.spark.sql.Dataset.showString(Dataset.scala:330)", "\tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)", "\tat java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77)", "\tat java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)", "\tat java.base/java.lang.reflect.Method.invoke(Method.java:568)", "\tat py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)", "\tat py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)", "\tat py4j.Gateway.invoke(Gateway.java:282)", "\tat py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)", "\tat py4j.commands.CallCommand.execute(CallCommand.java:79)", "\tat py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)", "\tat py4j.ClientServerConnection.run(ClientServerConnection.java:106)", "\tat java.base/java.lang.Thread.run(Thread.java:840)"] }, } ``` FYI: Python logger provide a way to get a detailed exception information so we can just leverage it :-) -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org