Hi Jarod,

In fact you can either choose a fixed root, or a draw from a multivariate 
normal with the stationary covariance (random root).

I will change the name of the options in an upcoming release (and on gitHub) to 
make it more explicit and make it homogeneous with univariate implementations

HTH,

Julien


For instance for the univariate case, you will also find both parameterizations 
in the phylolm package (Ho & Ané, 2014):

library(mvMORPH)
library(phylolm)

set.seed(123)
tre = pbtree(n=100, scale=1)

# with phylolm
x <- rTrait(n=1, phy=tre, model="OU", 
parameters=list(optimal.value=2,sigma2=1,alpha=0.1))
phylolm(x~1,phy=tre,model="OUrandomRoot")
phylolm(x~1,phy=tre,model="OUfixedRoot")

# with mvMORPH
mvOU(tre, x,model="OU1", param=list(vcv="ouch"))
mvOU(tre, x,model="OU1", param=list(vcv="mvmorph"))



________________________________________
De : R-sig-phylo <r-sig-phylo-boun...@r-project.org> de la part de Jarrod 
Hadfield <j.hadfi...@ed.ac.uk>
Envoyé : vendredi 4 mars 2016 07:45
À : r-sig-phylo@r-project.org
Objet : [R-sig-phylo] root in mvOU

Hi,

I am unclear what assumptions are being made about the root values in
mvOU, and was wondering if someone could clarify? For ease, imagine an
OU1 model where there is one optimum per trait and so theta is a vector.
Is the root value assumed to be theta, or a draw from a multivariate
normal with expectation theta, and covariance matrix equal to the
stationary covariance?

Thanks for any help,

Jarrod

--
The University of Edinburgh is a charitable body, registered in
Scotland, with registration number SC005336.

_______________________________________________
R-sig-phylo mailing list - R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
Searchable archive at http://www.mail-archive.com/r-sig-phylo@r-project.org/

_______________________________________________
R-sig-phylo mailing list - R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
Searchable archive at http://www.mail-archive.com/r-sig-phylo@r-project.org/

Reply via email to