Hi,

I am very new to R and I've been trying to work through the R book to gain a
better idea of the code (which is also completely new to me).

Initially I imputed my data from a text file and that seemed to work ok, but
I'm trying to examine linear relationships between gdist and gair, gdist and
gsub, m6dist and m6air, etc.

This didn't work and I think it might have something to do with the n/a's in
my dataset.
> habitat
    gdist gair gsub m6dist m6air m6sub m7dist m7air m7sub m8dist m8air m8sub
1      20    8   14   -0.5    24    19      7  12.1  16.1    2.5    12    12
2       4   13   15   -0.1  24.5  24.5    0.1  11.4  15.1      2    14    16
3      30 12.6 16.4     -3    25    26    2.5   9.7  12.8    0.1  11.5    14
4      40 12.6 17.9      1   n/a   n/a    0.1   8.1  15.2      2    16    20
5      40    2  1.8      1   n/a   n/a    0.7  10.2  24.1      2    16    19
6      10   13   31    1.5   n/a   n/a    n/a    20   n/a      2    17    20
7     0.1 19.1 27.9      1  24.5    26    0.1  20.6  22.4      6    17  21.5
8       1 23.4 33.1   0.25    25  24.5      2  22.4  24.1    1.5    17    18
9       7 23.5 30.5     -1  29.7    29    0.1  27.8  24.2      3    11    12
10      9 23.5 25.4      2   n/a   n/a      4  29.3  24.2      6    13    14
11      2 23.5   23   0.05  28.5    26      1  29.7  26.6      2    15    15
12      1 23.6 23.4    0.3  22.2  24.8    0.1  20.6  22.6      2    15    21
13    1.5   24 26.2    0.1  23.7  23.2    0.1  20.9  26.6      4  17.5    17
14      6 19.4 23.4   0.05  24.5  27.6      1  21.1  25.5      5    18    22
15    0.5 19.6 32.7    2.5  26.4   n/a      2  12.1  16.4      2    19    26
16      5 20.2 23.4    -12  22.4  26.1      2  14.4  16.6      1   n/a   n/a
17     10 23.1 24.1    0.2  23.6  24.3    0.1  14.4  17.7      4     9    12
18      6   17   19    -10  23.6  21.5      1  16.2  16.9    0.1    10    12
19      6   17   19     60   n/a   n/a     10  13.3  24.3      3     8    12
20      2   19   21     60   n/a   n/a      7  19.5  23.9      3     9    13
21      2   19   21      2  17.3  17.3      2  21.1  25.5      2    10    15
22      2   20   23      2  17.3  17.3      3  21.5  21.4      4    11  16.5
23      3   20   23      2  22.5  24.1    1.5  17.6  21.7    0.1    12    15
24      1  8.1  8.6      2  22.5  24.5     10  17.7    23      8    15    21
25    2.5  8.4  9.6      3   n/a   n/a      1  22.3  26.8      2     8    14
26     15 11.5 12.1     20   n/a   n/a     -1  27.3  26.6      1    15    14
27   -0.5 13.6  9.3      5   n/a   n/a      1  27.4  31.3      3    15    12
28      4 13.9 16.6      7   n/a   n/a      1  23.2  30.1    0.1    13    16
29      1 14.7 17.7    1.5   n/a   n/a      3  18.9  31.4      3    16    21
30      5 14.9 23.3    0.2  23.3  25.3      3  18.9  29.7    0.1    16    18
31      6 14.9 19.1    2.5   n/a   n/a      5    19  24.8      8  13.5    16
32    2.5 14.9 21.6      3   n/a   n/a      4    19  20.5      3    20    23
33      8 15.4 14.6      4  13.3  12.8    0.3  20.5  25.8      1    20    18
34    0.2 16.3 16.2    3.5  14.5  15.7      8  20.6    28      1    21    23
35      7 17.4 19.4      2    16  15.7      8  22.3    23      1    21    25
36     12 18.7 21.1    0.5  14.5  13.5      8  22.3  21.6      2    12    14
37      1 18.8 18.9    n/a   n/a   n/a      7  22.3  23.4      3  13.5    24
38    1.5   19 21.7    n/a   n/a   n/a      7  14.5  18.6      3    14    27
39    1.5   19 19.3    n/a   n/a   n/a      7    15  18.6    0.3    14    21
40      1 19.4   21    n/a   n/a   n/a    0.1  17.3    21   0.01    15    16
41    0.3   19 17.9    n/a   n/a   n/a     10    18  26.3   0.01    16    14
42    0.2   19 17.9    n/a   n/a   n/a     10  18.1  24.9   0.25    16    25
43    0.2 21.5 18.4    n/a   n/a   n/a    2.5    19  21.1      2    15    18
44      1 22.1 22.3    n/a   n/a   n/a      2  19.5  21.1      2    18    18
45      2 22.5 20.6    n/a   n/a   n/a      1  24.1  27.7     -1    22    25
46     10  n/a  n/a    n/a   n/a   n/a    0.5  14.7  18.1     -1    23    22
47     10 21.1 25.8    n/a   n/a   n/a     15  16.4  20.3      3    23    30
48     30  n/a  n/a    n/a   n/a   n/a     15  16.4  20.3   0.15    30    24
49     10  n/a  n/a    n/a   n/a   n/a     16  16.4  23.2      4    23    23
50     10  n/a  n/a    n/a   n/a   n/a      8  18.2  22.5      3    23    24
51     15 14.4 20.2    n/a   n/a   n/a     10  18.2  24.5    0.1    26    29
52      3 12.7 19.7    n/a   n/a   n/a      8  18.7  22.5    0.2    20    21
53      5   14 14.7    n/a   n/a   n/a      3    19  24.1    1.5    21    21
54      1 16.9 17.9    n/a   n/a   n/a      4  20.7  26.2    1.5    23    23
55      2   17 17.9    n/a   n/a   n/a    3.5    17  18.8   0.05    24    24
56    0.5 11.2 11.7    n/a   n/a   n/a      3  17.4  20.4      2    26    26
57      0 12.7 14.7    n/a   n/a   n/a    1.5  19.4  21.2    n/a   n/a   n/a
58      0 14.2   20    n/a   n/a   n/a      5   n/a   n/a     10    22    23
59    1.5 14.2 16.8    n/a   n/a   n/a      5  20.8  22.3      3    25    25
60     10 16.1    2    n/a   n/a   n/a      7  20.9  27.2      2    25    25
61    3.5 14.8   17    n/a   n/a   n/a      4    21  20.5      4    21    23
62    0.1 16.6 14.8    n/a   n/a   n/a      4  22.3  21.7     15    28    26
63   -0.1 17.1 26.9    n/a   n/a   n/a      8  22.3  27.3      2    23    22
64     -2 17.7 27.1    n/a   n/a   n/a      2  22.8  23.2      3    22    25
65    1.5 18.9 20.3    n/a   n/a   n/a      6  25.5  24.3      2    25    27
66      3 19.7 23.3    n/a   n/a   n/a      5   n/a   n/a    0.1    26    27
67   -0.3 20.4 23.4    n/a   n/a   n/a      7   n/a   n/a    0.5    28    36
68    0.3 23.3 33.6    n/a   n/a   n/a      7   n/a   n/a      3    27    29
69      0 20.8 25.4    n/a   n/a   n/a      6   n/a   n/a    1.5    23    23
70    0.7   22 26.6    n/a   n/a   n/a      4   n/a   n/a      2    23    23
71      2 22.4 25.8    n/a   n/a   n/a      4  23.1  21.8      2    24    25
72      0 23.4 26.6    n/a   n/a   n/a   0.05  23.2  24.4      2    24    25
73      5 19.4 24.1    n/a   n/a   n/a    0.1  25.3  28.4    0.2    24    24
74      8 19.6 27.1    n/a   n/a   n/a    0.5  25.4  25.4   -0.1    24   n/a
75      5 19.6   27    n/a   n/a   n/a     10   n/a   n/a      2    18    19
76      1 19.7 29.8    n/a   n/a   n/a     -3  22.4  22.4     15    19    20
77      8 20.6 37.6    n/a   n/a   n/a     -2  22.8  21.6      4    17    19
78     15   21 23.7    n/a   n/a   n/a     -1  23.1  23.4      4    30    24
79      2 24.6 25.3    n/a   n/a   n/a     -3  23.1  24.1    n/a    26   n/a
80    3.5 25.2 26.9    n/a   n/a   n/a   -3.5  24.5  20.5      1    28   n/a
81      5 17.8 22.8    n/a   n/a   n/a    2.5  25.4  31.9    n/a    28   n/a
82     15   20 24.6    n/a   n/a   n/a      7  19.6  20.4      2    29   n/a
83      3 21.1 24.3    n/a   n/a   n/a     -3  23.1  27.1      1    24   n/a
84      5 17.2 19.5    n/a   n/a   n/a      3  23.8  28.4      1    25   n/a
85      7 17.2   18    n/a   n/a   n/a    0.5  24.4  25.2   0.75    25   n/a
86   -0.3 23.8 24.5    n/a   n/a   n/a   -1.5  25.2  23.9      2    25   n/a
87    0.2 25.9 26.5    n/a   n/a   n/a     -2  29.5  25.2      1    24    28
88     -3 20.4   24    n/a   n/a   n/a      6  29.8  33.6      5    18    21
89     -5 24.9 23.7    n/a   n/a   n/a      8  25.2  26.4     15    23    24
90    0.5 26.6   27    n/a   n/a   n/a   0.05    26  29.7      3    24    27
91   -0.8 27.3 25.4    n/a   n/a   n/a     20  23.4  26.3    1.5    25   n/a
92      2   24 25.8    n/a   n/a   n/a      1  23.7  22.7      1    18    22
93   -0.1   26   28    n/a   n/a   n/a  -0.01  24.8  27.2     10    21    23
94      1   26   35    n/a   n/a   n/a      1    25  25.8     15    21    23
95      0   25 21.5    n/a   n/a   n/a    1.5  25.1  25.9      4    22    20
96     -3 26.9 25.9    n/a   n/a   n/a      2  25.3  26.6    n/a   n/a   n/a
97    1.5 24.1 30.4    n/a   n/a   n/a      2  25.6  25.5    n/a   n/a   n/a
98      1 24.1 24.8    n/a   n/a   n/a    1.5  25.8  28.5    n/a   n/a   n/a
99     10 26.5 28.9    n/a   n/a   n/a      2  25.9    28    n/a   n/a   n/a
100  -0.7 27.5 27.6    n/a   n/a   n/a      5  29.2  24.2    n/a   n/a   n/a
101    -3 28.1 17.6    n/a   n/a   n/a    1.5   n/a   n/a    n/a   n/a   n/a
102     1 29.7 28.3    n/a   n/a   n/a      2   n/a   n/a    n/a   n/a   n/a
103     2   24 25.8    n/a   n/a   n/a      2   n/a   n/a    n/a   n/a   n/a
104    30   28   29    n/a   n/a   n/a      2   n/a   n/a    n/a   n/a   n/a
105    17   32   36    n/a   n/a   n/a      1   n/a   n/a    n/a   n/a   n/a
106     8 19.1 23.2    n/a   n/a   n/a   0.01  30.2  30.4    n/a   n/a   n/a
107     5 19.1 23.1    n/a   n/a   n/a     -3  31.6  35.7    n/a   n/a   n/a
108    -3 23.7 25.4    n/a   n/a   n/a   0.01  27.5  25.1    n/a   n/a   n/a
109  -2.5 24.1 25.1    n/a   n/a   n/a  -0.02  28.6  31.5    n/a   n/a   n/a
110    -2 24.4 26.9    n/a   n/a   n/a      1  28.6  30.9    n/a   n/a   n/a
111    -4 24.6 26.3    n/a   n/a   n/a      8  30.3  29.7    n/a   n/a   n/a
112   0.7 21.3 24.7    n/a   n/a   n/a     -3  26.7  28.4    n/a   n/a   n/a
113    -3 21.6 27.6    n/a   n/a   n/a      4  28.8  28.7    n/a   n/a   n/a
114    -2   21   23    n/a   n/a   n/a    0.5  31.2  31.8    n/a   n/a   n/a
115  -0.1   24   20    n/a   n/a   n/a      8  32.3  38.7    n/a   n/a   n/a
116     3   26   21    n/a   n/a   n/a    0.1  26.4    27    n/a   n/a   n/a
117  -0.2   27   24    n/a   n/a   n/a     -2  21.4  25.8    n/a   n/a   n/a
118     1   28   28    n/a   n/a   n/a      3  22.3  25.8    n/a   n/a   n/a
119   0.1 24.1 23.1    n/a   n/a   n/a      7    23  24.1    n/a   n/a   n/a
120   3.5 24.5   25    n/a   n/a   n/a    0.2  24.5  27.1    n/a   n/a   n/a
121   0.1 24.6 25.7    n/a   n/a   n/a      3  25.2  24.1    n/a   n/a   n/a
122     3   28   24    n/a   n/a   n/a   -0.5  25.8  28.3    n/a   n/a   n/a
123     5   29   28    n/a   n/a   n/a    0.2  25.8  27.8    n/a   n/a   n/a
124    -2  n/a  n/a    n/a   n/a   n/a     10  26.3  23.3    n/a   n/a   n/a
125   1.5  n/a  n/a    n/a   n/a   n/a     20  26.5    24    n/a   n/a   n/a
126     3  n/a  n/a    n/a   n/a   n/a      3  26.5  24.3    n/a   n/a   n/a
127  -0.2   26   24    n/a   n/a   n/a      3   n/a  27.7    n/a   n/a   n/a
128  -0.1   26   22    n/a   n/a   n/a      2  23.3   n/a    n/a   n/a   n/a
129     3   19   22    n/a   n/a   n/a      8  23.9  25.9    n/a   n/a   n/a
130     2   21   25    n/a   n/a   n/a  -0.05  24.4  26.7    n/a   n/a   n/a
131     1   15   15    n/a   n/a   n/a   -0.1  24.8  25.1    n/a   n/a   n/a
132     6   16   18    n/a   n/a   n/a  -0.01  26.2  26.2    n/a   n/a   n/a
133     6   18   19    n/a   n/a   n/a   0.01  26.2  27.6    n/a   n/a   n/a
134  -0.2   16   19    n/a   n/a   n/a     12    27  26.4    n/a   n/a   n/a
135     2   17 18.5    n/a   n/a   n/a    0.1  27.6  28.8    n/a   n/a   n/a
136   0.1 17.5 16.5    n/a   n/a   n/a   -1.2  21.1  22.2    n/a   n/a   n/a
137   1.5   18   17    n/a   n/a   n/a     -2  21.1  22.4    n/a   n/a   n/a
138    -1   18   17    n/a   n/a   n/a    0.5  21.4  25.4    n/a   n/a   n/a
139     8   18 18.5    n/a   n/a   n/a      1  22.6  24.4    n/a   n/a   n/a
140   1.5   19 18.5    n/a   n/a   n/a      1  25.1  31.4    n/a   n/a   n/a
141     5   19   21    n/a   n/a   n/a      2  25.2    25    n/a   n/a   n/a
142    10   19   20    n/a   n/a   n/a    0.5  25.2  30.2    n/a   n/a   n/a
143     8   19   21    n/a   n/a   n/a      5  22.3  23.5    n/a   n/a   n/a
144     6   19   18    n/a   n/a   n/a    0.1  24.1  23.4    n/a   n/a   n/a
145     0   20   20    n/a   n/a   n/a    1.5  24.1    24    n/a   n/a   n/a
146   0.3   12   13    n/a   n/a   n/a      1  25.2  27.9    n/a   n/a   n/a
147   2.5   13 12.5    n/a   n/a   n/a      5  25.2  27.6    n/a   n/a   n/a
148     2   14   16    n/a   n/a   n/a      1  25.2  29.1    n/a   n/a   n/a
149    40   14   12    n/a   n/a   n/a   -1.5  26.5    27    n/a   n/a   n/a
150    30   15   16    n/a   n/a   n/a    n/a   n/a   n/a    n/a   n/a   n/a
151    40 15.5   16    n/a   n/a   n/a   0.01   n/a   n/a    n/a   n/a   n/a
152    50   18 12.5    n/a   n/a   n/a  -0.02   n/a   n/a    n/a   n/a   n/a
153   n/a  n/a  n/a    n/a   n/a   n/a   0.05   n/a   n/a    n/a   n/a   n/a
154    40   14   21    n/a   n/a   n/a     -1   n/a   n/a    n/a   n/a   n/a
155   n/a  n/a  n/a    n/a   n/a   n/a   0.05   n/a   n/a    n/a   n/a   n/a
156   n/a  n/a  n/a    n/a   n/a   n/a    -10   n/a   n/a    n/a   n/a   n/a
157   n/a  n/a  n/a    n/a   n/a   n/a    0.1  19.3  19.8    n/a   n/a   n/a
158   n/a  n/a  n/a    n/a   n/a   n/a    0.5    21  26.2    n/a   n/a   n/a
159   n/a  n/a  n/a    n/a   n/a   n/a      1   n/a   n/a    n/a   n/a   n/a
160   n/a  n/a  n/a    n/a   n/a   n/a    n/a   n/a   n/a    n/a   n/a   n/a
161   n/a  n/a  n/a    n/a   n/a   n/a   0.15  22.8  23.3    n/a   n/a   n/a
162   n/a  n/a  n/a    n/a   n/a   n/a      1  24.3  26.5    n/a   n/a   n/a
163   n/a  n/a  n/a    n/a   n/a   n/a      2  24.4  24.6    n/a   n/a   n/a
164   n/a  n/a  n/a    n/a   n/a   n/a      3    15  18.5    n/a   n/a   n/a
165   n/a  n/a  n/a    n/a   n/a   n/a      4   n/a   n/a    n/a   n/a   n/a
166   n/a  n/a  n/a    n/a   n/a   n/a     15   n/a   n/a    n/a   n/a   n/a
167   n/a  n/a  n/a    n/a   n/a   n/a      4   n/a   n/a    n/a   n/a   n/a
168   n/a  n/a  n/a    n/a   n/a   n/a    0.3   n/a   n/a    n/a   n/a   n/a
169   n/a  n/a  n/a    n/a   n/a   n/a    1.5   n/a   n/a    n/a   n/a   n/a
170   n/a  n/a  n/a    n/a   n/a   n/a      0   n/a   n/a    n/a   n/a   n/a
171   n/a  n/a  n/a    n/a   n/a   n/a      3   n/a   n/a    n/a   n/a   n/a
172   n/a  n/a  n/a    n/a   n/a   n/a    0.1    17    18    n/a   n/a   n/a
173   n/a  n/a  n/a    n/a   n/a   n/a    0.2  17.5    18    n/a   n/a   n/a
174   n/a  n/a  n/a    n/a   n/a   n/a      5    20    21    n/a   n/a   n/a
175   n/a  n/a  n/a    n/a   n/a   n/a      1    10    12    n/a   n/a   n/a
176   n/a  n/a  n/a    n/a   n/a   n/a      2  13.5    12    n/a   n/a   n/a
177   n/a  n/a  n/a    n/a   n/a   n/a      2    12    12    n/a   n/a   n/a
178   n/a  n/a  n/a    n/a   n/a   n/a    2.5    13    15    n/a   n/a   n/a
179   n/a  n/a  n/a    n/a   n/a   n/a     10  12.5    14    n/a   n/a   n/a

I had to give up on this data set, because I wasn't sure how to fix the
problem, so I've been creating separate text files for all the combinations
I'm interested in without the extra n/a's.  This is really time consuming,
and I know there is probably a simpler way I just don't know what it is!

I managed to run a lm with just the data in a separate file for gdist and
gair and I have a few outliers.  I've tried to remove them with g_dist_air2
<- update(g_dist_air, subset=(gair !=97)), but this doesn't seem to work.
> g_dist_temp
    gdist gair
1    17.0 32.0
2     1.0 29.7
3     5.0 29.0
4    -3.0 28.1
5    30.0 28.0
6     1.0 28.0
7     3.0 28.0
8    -0.7 27.5
9    -0.8 27.3
10   -0.2 27.0
11   -3.0 26.9
12    0.5 26.6
13   10.0 26.5
14   -0.1 26.0
15    1.0 26.0
16    3.0 26.0
17   -0.2 26.0
18   -0.1 26.0
19    0.2 25.9
20    3.5 25.2
21    0.0 25.0
22   -5.0 24.9
23    2.0 24.6
24   -4.0 24.6
25    0.1 24.6
26    3.5 24.5
27   -2.0 24.4
28    1.5 24.1
29    1.0 24.1
30   -2.5 24.1
31    0.1 24.1
32    1.5 24.0
33    2.0 24.0
34    2.0 24.0
35   -0.1 24.0
36   -0.3 23.8
37   -3.0 23.7
38    1.0 23.6
39    7.0 23.5
40    9.0 23.5
41    2.0 23.5
42    1.0 23.4
43    0.0 23.4
44    0.3 23.3
45   10.0 23.1
46    2.0 22.5
47    2.0 22.4
48    1.0 22.1
49    0.7 22.0
50   -3.0 21.6
51    0.2 21.5
52    0.7 21.3
53   10.0 21.1
54    3.0 21.1
55   15.0 21.0
56   -2.0 21.0
57    2.0 21.0
58    0.0 20.8
59    8.0 20.6
60   -0.3 20.4
61   -3.0 20.4
62    5.0 20.2
63    2.0 20.0
64    3.0 20.0
65   15.0 20.0
66    0.0 20.0
67    3.0 19.7
68    1.0 19.7
69    0.5 19.6
70    8.0 19.6
71    5.0 19.6
72    6.0 19.4
73    1.0 19.4
74    5.0 19.4
75    0.1 19.1
76    8.0 19.1
77    5.0 19.1
78    2.0 19.0
79    2.0 19.0
80    1.5 19.0
81    1.5 19.0
82    0.3 19.0
83    0.2 19.0
84    3.0 19.0
85    1.5 19.0
86    5.0 19.0
87   10.0 19.0
88    8.0 19.0
89    6.0 19.0
90    1.5 18.9
91    1.0 18.8
92   12.0 18.7
93    6.0 18.0
94    1.5 18.0
95   -1.0 18.0
96    8.0 18.0
97   50.0 18.0
98    5.0 17.8
99   -2.0 17.7
100   0.1 17.5
101   7.0 17.4
102   5.0 17.2
103   7.0 17.2
104  -0.1 17.1
105   6.0 17.0
106   6.0 17.0
107   2.0 17.0
108   2.0 17.0
109   1.0 16.9
110   0.1 16.6
111   0.2 16.3
112  10.0 16.1
113   6.0 16.0
114  -0.2 16.0
115  40.0 15.5
116   8.0 15.4
117   1.0 15.0
118  30.0 15.0
119   5.0 14.9
120   6.0 14.9
121   2.5 14.9
122   3.5 14.8
123   1.0 14.7
124  15.0 14.4
125   0.0 14.2
126   1.5 14.2
127   5.0 14.0
128   2.0 14.0
129  40.0 14.0
130  40.0 14.0
131   4.0 13.9
132  -0.5 13.6
133   4.0 13.0
134  10.0 13.0
135   2.5 13.0
136   3.0 12.7
137   0.0 12.7
138  30.0 12.6
139  40.0 12.6
140   0.3 12.0
141  15.0 11.5
142   0.5 11.2
143   2.5  8.4
144   1.0  8.1
145  20.0  8.0
146  40.0  2.0

Are there any other ways to remove lines from data sets?  Or is there
something wrong with my code?

Is there anyway to use my old data set with all the n/a's to look at
relationships between the variables?  Ideally I want to add in more habitat
variables to this analysis, that will include some categorical data and more
n/a's since the data collection was not complete with every observation.

Any help is appreciated.

Tara

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to