Hi, Although my doubt is pretty,as i m not from stats background i am not sure how to proceed on this.
Currently i am doing a forecasting.I used ARIMA to forecast and time series was volatile i used garchFit for residuals. How to use the output of Garch to correct the forecasted values from ARIMA. Here is my code: ###delta is the data fit<-arima(delta,order=c(2,,0,1)) fit.res <- resid(fit) ##Check for Residuals acf((fit.res-mean(fit.res))/sd(fit.res)) acf(((fit.res-mean(fit.res))/sd(fit.res))^2) fit.fore = predict(fit, n.ahead=test) ##Use ARIMA GARCH To fit residuals from ARIMA Model 1. fitted.gar<-garchFit(formula =~arma(2,1)+garch(1,1),data=*fit.res*,cond.dist = "std",trace=FALSE) sresi=fitted....@residuals/fitted....@sigma.t ###Standardised Residuals acf(sresi) acf(sresi^2) fore.res<-predict(fitted.ga, n.ahead=test) OR 2. fitted.gar<-garchFit(formula =~arma(2,1)+garch(1,1),data=*delta*,cond.dist = "std",trace=FALSE) sresi=fitted....@residuals/fitted....@sigma.t ###Standardised Residuals acf(sresi) acf(sresi^2) fore.res<-predict(fitted.ga, n.ahead=test) My Question is 1. How to use fore.res(Result from Garch Model) to change fit.fore (Forecasted values from ARIMA) 2.Out of 1 and 2 for GARCH which one is correct.Pretty confused.Shud we need to use the residuals got from ARIMA Model or the series directly ? Regards, Raghav [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.