Hi pinusan, If it is possible, please add the code you used and output so to help people here help you.
In general, take the object you got, put it inside "str" and see where you statistic is (but for us to write the code, it would help if you where to add it to your massage) Best, Tal ----------------Contact Details:------------------------------------------------------- Contact me: tal.gal...@gmail.com | 972-52-7275845 Read me: www.talgalili.com (Hebrew) | www.biostatistics.co.il (Hebrew) | www.r-statistics.com (English) ---------------------------------------------------------------------------------------------- On Tue, Mar 16, 2010 at 9:31 PM, pinusan <anh...@msu.edu> wrote: > > Dear All, > I run the goodness of fit test using goodfit() in vcd package. > The result is as follow: > > Goodness-of-fit test for poisson distribution > > X^2 df P(> X^2) > Pearson 1.053348 2 0.5905661 > Warning message: > In summary.goodfit(gf) : Chi-squared approximation may be incorrect > > I want to save the the test statistics(X^2), df, and p-value. How can I > save > the result. Actually, I want to make a table. > > In addition, there is warning message "In summary.goodfit(gf) : Chi-squared > approximation may be incorrect". > How can I interpret this result. > > Have a nice day. > > -- > View this message in context: > http://n4.nabble.com/How-can-I-save-the-result-for-goodness-of-fit-test-tp1595429p1595429.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.