On 18-Feb-10 18:58:57, Dimitri Liakhovitski wrote: > Dear gurus, > I've analyzed a (fake) data set ("data") using logistic regression > (glm): > > logreg1 <- glm(z ~ x1 + x2 + y, data=data, family=binomial("logit"), > na.action=na.pass) > > Then, I created a data frame with 2 fixed levels (0 and 1) for each > predictor: > > attach(data) > x1<-c(0,1) > x2<-c(0,1) > y<-c(0,1) > newdata1<-data.frame(expand.grid(x1,x2,y)) > names(newdata1)<-c("x1","x2","y") > > Finally, I calculated model-predicted probabilities for each > combination of those fixed levels: > > newdata1$predicted <-predict(logreg1,newdata=newdata1, type="response") > > I am pretty sure the results I get (see the table below) are actual > probabilities. But just in case - could someone please confirm that > these are probabilities rather than log odds or odds? > Thanks a lot! > > x1 x2 y predicted > 1 0 0 0 0.08700468 > 2 1 0 0 0.19262901 > 3 0 1 0 0.27108334 > 4 1 1 0 0.48216220 > 5 0 0 1 0.53686154 > 6 1 0 1 0.74373367 > 7 0 1 1 0.81896484 > 8 1 1 1 0.91887072 > -- > Dimitri Liakhovitski
Yes, they are predicted probabilities of response Z=1. You specified this by setting 'type="response"'. See ?predict.glm (the method for 'predict' which is used for GLMs). Ted. -------------------------------------------------------------------- E-Mail: (Ted Harding) <ted.hard...@manchester.ac.uk> Fax-to-email: +44 (0)870 094 0861 Date: 18-Feb-10 Time: 19:38:54 ------------------------------ XFMail ------------------------------ ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.