Hi, I'd like to do a multinomial glm with nested and random Effects The "multinom" function from (nnet) give me this:
> multinom(mc$c ~ (1|mc$date)+mc$lma + mc$poid+(mc$pop) +mc$male %in% > mc$pop,family="multinomial" ) # weights: 60 (44 variable) initial value 6801.484618 iter 10 value 5704.912781 iter 20 value 5373.764816 iter 30 value 4977.685313 iter 40 value 4746.075251 iter 50 value 4740.904959 final value 4740.900034 converged Call: multinom(formula = mc$c ~ (1 | mc$date) + mc$lma + mc$poid + mc$pop + mc$male %in% mc$pop, family = "multinomial") Coefficients: (Intercept) 1 | mc$dateTRUE mc$lma mc$poid mc$pop2 mc$pop3 2 -3.3725062 -3.3725062 1.0578694 -0.2416550 -0.1112114 1.96731873 3 2.2583341 2.2583341 -0.1744330 -0.2552745 -0.5112047 -0.05992067 4 0.4713678 0.4713678 0.3032407 -0.3910529 -0.3587365 -0.31611663 5 0.1176258 0.1176258 0.4085705 -0.3465320 -0.4342574 -0.24052282 mc$pop4 mc$pop1:mc$male mc$pop2:mc$male mc$pop3:mc$male mc$pop4:mc$male 2 -0.6584972 0.03764097 0.042722762 -0.04506099 0.03963405 3 -0.8932160 -0.03943989 -0.005425975 -0.03670574 -0.01614433 4 -0.6258679 -0.02901482 -0.007115797 -0.01195997 -0.00537634 5 -1.2768885 -0.02291026 -0.005762747 -0.02240182 0.01579168 Residual Deviance: 9481.8 AIC: 9561.8 So, multinom, seems me work with nested and random effect.... Notice that a "TRUE" is added behind the random effect > multinom(mc$c ~ mc$mom %in% (1|mc$date) +(1|mc$date)+mc$lma + mc$poid+mc$pop > +mc$male %in% mc$pop,family="multinomial" ) # weights: 70 (52 variable) initial value 6801.484618 iter 10 value 5208.112867 iter 20 value 5084.345631 iter 30 value 4655.378383 iter 40 value 4521.895062 iter 50 value 4518.961455 final value 4518.961019 converged Call: multinom(formula = mc$c ~ mc$mom %in% (1 | mc$date) + (1 | mc$date) + mc$lma + mc$poid + (mc$pop) + mc$male %in% (mc$pop), family = "multinomial") Coefficients: (Intercept) 1 | mc$dateTRUE mc$lma mc$poid mc$pop2 mc$pop3 2 -3.54938862 -3.54938862 1.0472658 -0.2389110 -0.1126589 1.97228680 3 1.98030198 1.98030198 -0.1879820 -0.2524073 -0.5180808 -0.05418255 4 1.18772479 1.18772479 0.3435563 -0.4005161 -0.3395149 -0.33326040 5 0.09882458 0.09882458 0.4066034 -0.3458763 -0.4339492 -0.23909966 mc$pop4 mc$mom:1 | mc$dateFALSE mc$mom:1 | mc$dateTRUE mc$pop1:mc$male 2 -0.6607706 0 0.19949190 0.03740662 3 -0.8997561 0 0.30402706 -0.03987009 4 -0.6022370 0 -0.98117482 -0.02774351 5 -1.2764239 0 0.02313478 -0.02291646 mc$pop2:mc$male mc$pop3:mc$male mc$pop4:mc$male 2 0.042692605 -0.045517538 0.039313888 3 -0.005367900 -0.037430186 -0.016624565 4 -0.007190628 -0.009714267 -0.004076609 5 -0.005761103 -0.022468428 0.015746601 Residual Deviance: 9037.922 AIC: 9125.922 Here, the "TRUE" is added at the same place, and "FALSE" is added for the interaction with the random factor, coefficients are 0 multinom(formula = mc$c ~(1 | mc$mom %in% mc$date) + (1 | mc$date) + mc$lma + mc$poid + (mc$pop) + mc$male %in% (mc$pop), family = "multinomial") work well, but is it true ? hugo mathé hubertEmail : hug...@hotmail.fr approximatively, my experimental design is : some individuals (lizard) have a behaviour (a dependent unordered categorical variable). lizards come from several populations, for each lizard, behaviour is registered at morning , at noon, at evening, during several days. So, individuals are nested in populations and moments of the day is nested in the day. (isn't it ??) I'd like to identifies some type of individual so, (among other things) I need to the interaction between individuals and moment of the day which are tow nested variable... it's wrong to take the ( individuals : moment of the day) nested in (population : day) (mc$male : mc$mom ) %in% ( mc$pop : mc$date) (note that, I have only ONE value (behaviour) by moment of the day by day by individual ; but days are time series so each days aren't totally independent...) _________________________________________________________________ Hotmail: Trusted email with Microsoft’s powerful SPAM protection. [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.