Hi all, I hope that there might be some statistician out there to help me for a possible explanation for the following simple question.
Y1~ lm(y~ t1 + t2 + t3 + t4 + t5,data=temp) # oridnary linear model library(gam) Y2~ gam(y~ lo(t1) +lo(t2) +lo(t3) +lo(t4) +lo(t5),data=temp) # additive model In the first model t1, t2 and t3 found to be significant,. However, in the second model (using gam package) t1, t4 and t5 are significant. I was hopping to expect nearly similar results from both models but I found the opposite results. Is there any possible explanation for that? Thanks Val [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.