Hi: I'm not familar with prcomp but with the principal components function in bill revelle's psych package , one can specify the number of components one wants to use to build the "closest" covariance matrix I don't know what tol is doing in your example but it's not doing that.                                                                                                                                mark
On Nov 9, 2009, zubin <binab...@bellsouth.net> wrote: All 8 variables are still in the analysis, i am just reducing the number of components being estimated i thought.. Example 1 component 8 variables, there is no way 1 component explains 100% of the variance of the 8 variable data set. > princ = prcomp(df[,-1],rotate="varimax",scale=TRUE,tol=.95) > summary(princ) Importance of components: PC1 Standard deviation 1.38 Proportion of Variance 1.00 Cumulative Proportion 1.00 > summary(princ) Rotation: PC1 VIX0 -0.08217686 UUP0 -0.18881983 USO0 0.26647346 GLD0 0.26983923 HYG0 0.60674758 term0 0.18220237 spread0 0.61614047 TNX0 0.18111684 Daniel Malter wrote: > In the first PCA you ask how much variance of the EIGHT (!) variables is > captured by the first, second,..., eigth principal component. > > In the second PCA you ask how much variance of the THREE (!) variables is > captured by the first, second, and third principal component. > > Of course you need only as many PCs as there are variables to capture 100 % > of the variance. Your "problem" thus comes from the fact that you have eight > variables in the first PCA, which requires eight PCs to capture 100%, and > that you have only three variables in the second PCA, which naturally only > requires three PCs to capture 100% of the variance. > > So it's more, yes, you are missing something in this case, rather than that > something is wrong with the analyses. > > HTH, > Daniel > > ------------------------- > cuncta stricte discussurus > ------------------------- > > -----Ursprüngliche Nachricht----- > Von: [1]r-help-boun...@r-project.org [[2]mailto:r-help-boun...@r-project.org] Im > Auftrag von zubin > Gesendet: Monday, November 09, 2009 12:37 PM > An: [3]r-h...@r-project.org > Betreff: [R] prcomp - principal components in R > > Hello, not understanding the output of prcomp, I reduce the number of > components and the output continues to show cumulative 100% of the variance > explained, which can't be the case dropping from 8 components to 3. > > How do i get the output in terms of the cumulative % of the total variance, > so when i go from total solution of 8 (8 variables in the data set), to a > reduced number of components, i can evaluate % of variance explained, or am > I missing something?? > > 8 variables in the data set > > > princ = prcomp(df[,-1],rotate="varimax",scale=TRUE) > > summary(princ) > Importance of components: > PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 > Standard deviation 1.381 1.247 1.211 0.994 0.927 0.764 0.6708 0.4366 > Proportion of Variance 0.238 0.194 0.183 0.124 0.107 0.073 0.0562 0.0238 > Cumulative Proportion 0.238 0.433 0.616 0.740 0.847 0.920 0.9762 *1.0000* > > > princ = prcomp(df[,-1],rotate="varimax",scale=TRUE,tol=.75) > > summary(princ) > > Importance of components: > PC1 PC2 PC3 > Standard deviation 1.381 1.247 1.211 > Proportion of Variance 0.387 0.316 0.297 Cumulative Proportion 0.387 0.703 > *1.000* > > [[alternative HTML version deleted]] > > ______________________________________________ > [4]r-h...@r-project.org mailing list > [5]https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide [6]http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > > ______________________________________________ [7]r-h...@r-project.org mailing list [8]https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide [9]http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. References 1. mailto:r-help-boun...@r-project.org 2. mailto:r-help-boun...@r-project.org 3. mailto:r-help@r-project.org 4. mailto:R-help@r-project.org 5. https://stat.ethz.ch/mailman/listinfo/r-help 6. http://www.R-project.org/posting-guide.html 7. mailto:R-help@r-project.org 8. https://stat.ethz.ch/mailman/listinfo/r-help 9. http://www.R-project.org/posting-guide.html ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.