The following R code using different packages gives the same results for a
   simple logistic regression without regularization, but different results
   with regularization. This may just be a matter of different scaling of the
   regularization parameters, but if anyone familiar with these packages has
   insight into why the results differ, I'd appreciate hearing about it. I'm
   new to R. Thanks. (Version info below. Same results on Windows and Solaris
   8, except that I haven't gotten glmnet to compile on the latter.)
   Robert V (Bob) Sasseen
   [1]sass...@ai.sri.com
   > # Some x values (predictive var).
   > x = c(-2, -2, -2, -2, -1, -1, -1, 2, 2, 2, 3, 3, 3, 3)
   > # Some z values--the observed outcome.
   > # Effect is that for
   > # x = -2, p = 1/4;
   > # x = -1, p = 1/3;
   > # x =  2, p = 2/3;
   > # x =  3, p = 3/4.
   > z = c(0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1)
   > library(Design)
   > g = lrm(z ~ x)
   > g$coefficients
    Intercept          x
   -0.2224842  0.4449685
   > g = lrm(z ~ x, penalty = 1)
   > g$coefficients
    Intercept          x
   -0.1620727  0.3241454
   > library(glmnet)
   > g = glmnet(cbind(x), cbind(1-z, z), family = "binomial", lambda = 0,
   standardize = FALSE)
   > coef(g)
              1
     -0.2224843
   x  0.4449687
   > g = glmnet(cbind(x), cbind(1-z, z), family = "binomial", lambda = 1, alpha
   = 0, standardize = FALSE)
   > coef(g)
              1
     -0.1098361
   x  0.2196721
   > library(penalized)
   > fit = penalized(z ~ x)
   > coefficients(fit, "all")
   (Intercept)           x
    -0.2224843   0.4449687
   > fit = penalized(z ~ x, lambda2 = 1)
   > coefficients(fit, "all")
   (Intercept)           x
    -0.2060658   0.4121315
   > sessionInfo()
   R version 2.9.2 (2009-08-24)
   i386-pc-mingw32
   locale:
   LC_COLLATE=English_United          States.1252;LC_CTYPE=English_United
   States.1252;LC_MONETARY=English_United
   States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252
   attached base packages:
   [1] splines   stats     graphics  grDevices utils     datasets  methods
   [8] base
   other attached packages:
   [1]     penalized_0.9-26      glmnet_1.1-3          Matrix_0.999375-30
   lattice_0.17-25
   [5] Design_2.3-0       Hmisc_3.7-0        survival_2.35-4
   loaded via a namespace (and not attached):
   [1] cluster_1.12.0 grid_2.9.2

References

   1. mailto:sass...@ai.sri.com
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to