Hi All, How do i calculate KMO for a dataset? *Dataset:---------------------*
m1 m2 m3 m4 m5 m6 m7 m8 1 2 20 20 2 1 4 14 12 2 9 16 3 5 2 5 5 15 3 18 18 18 13 17 9 2 4 4 7 7 2 12 2 11 11 11 5 7 8 5 19 5 2 20 18 6 7 4 7 4 7 9 3 3 7 5 5 5 12 5 13 13 12 8 6 6 4 3 5 17 17 16 9 12 12 4 2 4 4 14 14 10 5 14 6 19 6 2 20 20 11 13 13 13 20 10 10 10 9 12 3 3 3 11 6 15 15 12 13 2 2 2 7 5 5 6 16 14 11 11 10 4 10 10 10 10 15 1 1 1 8 4 16 16 17 16 23 23 3 4 3 3 3 3 17 4 4 6 9 8 17 8 18 18 8 8 5 9 7 7 7 9 19 6 7 8 3 8 4 4 7 20 8 11 9 3 2 2 2 3 ** *SPSS results for the above dataset:--------* Kaiser-Meyer-Olkin Measure of Sampling Adequacy.(KMO) 0.350911931549742 *Got a R-function:-----* ( http://www.opensubscriber.com/message/r-h...@stat.math.ethz.ch/2776549.html) kmo.test <- function(df){ ### ## Calculate the Kaiser-Meyer-Olkin Measure of Sampling Adequacy. ## Input should be a data frame or matrix, output is the KMO statistic. ## Formula derived from Hutcheson et al, 1999, ## "The multivariate social scientist," page 224, ISBN 0761952012 ## see <http://www2.chass.ncsu.edu/garson/pa765/hutcheson.htm><http://www2.chass.ncsu.edu/garson/pa765/hutcheson.htm%3E> ### cor.sq = cor(df)^2 cor.sumsq = (sum(cor.sq)-dim(cor.sq)[1])/2 library(corpcor) pcor.sq = cor2pcor(cor(df))^2 pcor.sumsq = (sum(pcor.sq)-dim(pcor.sq)[1])/2 kmo = sus.cor.ss/(sus.cor.ss+sus.pcor.ss) return(kmo) } What is this object "*sus.cor.ss*"?I get errors > sus.cor.ss Error: object "sus.cor.ss" not found Thanks in advance Moumita [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.