Dan, > May I ask you to report this as an issue on the oce webpage, > so that others can see the discussion? (The "R help" is > perhaps not the right place to report bugs ... and, yes, this > is a bug.) > http://code.google.com/p/r-oce/issues/list
Yes, I will. > A possible solution is to edit the "windrose.R" file and > replace the first function with what I am putting below. But > I am actually not sure on the "if (theta..." line, and need > to think about that some more. Also, please note that > official releases of OCE take some time (typically a week) so > that's why I always suggest a workaround, first. As I'm sure > you're aware, you could just "source" a file containing the > code below, after doing the "library(oce)", and that will > work until a new release comes out. I have been holding off > on a release for quite a while, since I am working on code to > handle acoustic-doppler data from about a half-dozen > instruments, and I try to avoid letting anyone get caught out > by using code that is still in development. > > as.windrose <- function(x, y, dtheta = 15) { > dt <- dtheta * pi / 180 > dt2 <- dt / 2 > R <- sqrt(x^2 + y^2) > angle <- atan2(y, x) > L <- max(R, na.rm=TRUE) > nt <- 2 * pi / dt > theta <- count <- mean <- vector("numeric", nt) > fivenum <- matrix(0, nt, 5) > for (i in 1:nt) { > theta[i] <- i * dt > if (theta[i] <= pi) > inside <- (angle < (theta[i] + dt2)) & > ((theta[i] - dt2) <= angle) > else { > inside <- ((2*pi+angle) < (theta[i] + dt2)) & ((theta[i] > - dt2) <= (2*pi+angle)) > } > count[i] <- sum(inside) > mean[i] <- mean(R[inside], na.rm=TRUE) > fivenum[i,] <- fivenum(R[inside], na.rm=TRUE) > } > data <- list(n=length(x), x.mean=mean(x, na.rm=TRUE), > y.mean=mean (y, na.rm=TRUE), theta=theta*180/pi, count=count, > mean=mean, > fivenum=fivenum) > metadata <- list(dtheta=dtheta) > log <- processing.log.item(paste(deparse(match.call()), sep="", > collapse="")) > res <- list(data=data, metadata=metadata, processing.log=log) > class(res) <- c("windrose", "oce") > res > } I decided to not use the windrose object created by as.windrose(). Instead, I wrote my own function for plotting wind speed and wind direction data, using some of the features from plot.windrose(). The data I work with is usually provided in mph or m/s and azimuth degrees, so I found it more convenient to provide those directly as arguments to the function. Three utility functions come first, followed by the main one of interest, PLOT.WINDROSE2(). degrees <- function(radians) { return(radians * 180 / pi) } radians <- function(degrees) { return(degrees * pi / 180) } # Define a function that converts compass headings (bearings, azimuths) into geometric angles for trigonometry. # Examples: For a heading = 0 degrees, vector points due north, and angle = 90 deg. # For a heading = 90 degrees, vector points east, and angle = 0 deg. convert.heading.angle <- function(heading) { num.heading <- length(heading) angles <- rep(NA, num.heading) for(i in 1:num.heading) { angles[i] <- ifelse((heading[i] >=0 && heading[i] <= 90), 90 - heading[i], ifelse((heading[i] >=90 && heading[i] <= 180), 360 - (heading[i] - 90), ifelse((heading[i] >=180 && heading[i] <= 270), 180 + (270 - heading[i]), 90 + (360 - heading[i])) ) ) } return(angles) } # end of convert.heading.angle() # A function to plot windroses, with similar output capabilities as that of plot.windrose() function # in the oce package. This function has not been extensively tested. # Theta should be in ascending order, starting at some azimuth > 0 degrees. # The oce package was written by Dan Kelley. # Arguments: # 1) vector of windspeeds # 2) vector of wind directions (azimuths, degrees; 0=calm, 45=NE, 90=E, 180=S, 270=W, 360=N) # AZIMUTH DEGREES ARE COMPASS BEARINGS # 3) vector of windrose sector centers (azimuths, degrees) # 4) type of windrose plot: count, mean, median, or fivenum # 5) color vector for use as in plot.windrose() # 6) plot title PLOT.WINDROSE2 <- function(ws, az, theta, type=c("count", "mean", "median", "fivenum"), col, title, ...) { type <- match.arg(type) nt <- length(theta) # number of sectors az.ar <- radians(az) # convert azimuth degrees to radians t <- radians(theta) # convert sector centers to radians dt <- t[2] - t[1] # angle range for each sector (radians) if(dt < 0) stop("Center angles for theta must be in increasing order.\n") if((sum(diff(theta)) + theta[2]-theta[1]) != 360) stop("Sectors do not add up to 360 degrees.\n") dt2 <- dt / 2 # radians sector.boundaries <- c(t - dt2, t[nt] + dt2) # sector boundaries in azimuth radians # bin the azimuths into the sectors ind.sector <- ifelse(az.ar < sector.boundaries[1], nt, findInterval(az.ar, sector.boundaries)) # Bin the azimuth data into the defined sectors calm <- ifelse(az == 0, T, F) # logical vector to indicate whether calm or not # For each sector, compute the count and mean, and the components of fivenum: # min, 1st quartile, median, 3rd quartile, and max. x <- list() # make a list like plot.windrose() uses x$data <- list(count=integer(nt), mean=numeric(nt), median=numeric(nt), fivenum=matrix(nrow=nt, ncol=5)) for(i in 1:nt) { ind <- which(ind.sector == i & !calm) x$data$count[i] <- length(ind) x$data$mean[i] <- mean(ws[ind]) x$data$fivenum[i,] <- fivenum(ws[ind]) } # Plot setup plot.new() xlim <- ylim <- c(-1, 1) par(xpd=NA) plot.window(xlim, ylim, "", asp = 1) if (missing(col)) { col <- c("red", "pink", "blue", "darkgray") } else { if (length(col) != 4) stop("'col' should be a list of 4 colors") } # Draw circle and radii tt <- seq(0, 2*pi, length.out=100) px <- cos(tt) py <- sin(tt) lines(px, py, col=col[4]) # draw the circle # Convert sector boundaries from azimuth radians to geometric radians for drawing t.deg <- degrees(t) t <- radians(convert.heading.angle(t.deg)) for (i in 1:nt) { lines(c(0, cos(t[i] - dt2)), c(0, sin(t[i] - dt2)), lwd=0.5, col=col[4]) # draw the radius } text( 0, -1, "S", pos=1) text(-1, 0, "W", pos=2) text( 0, 1, "N", pos=3) text( 1, 0, "E", pos=4) # Draw rose in a given type if (type == "count") { max <- max(x$data$count, na.rm=TRUE) for (i in 1:nt) { r <- x$data$count[i] / max xlist <- c(0, r * cos(t[i] - dt2), r * cos(t[i] + dt2), 0) ylist <- c(0, r * sin(t[i] - dt2), r * sin(t[i] + dt2), 0) polygon(xlist, ylist,col=col[1], border=col[1]) } title(title) } else if (type == "mean") { max <- max(x$data$mean, na.rm=TRUE) for (i in 1:nt) { r <- x$data$mean[i] / max xlist <- c(0, r * cos(t[i] - dt2), r * cos(t[i] + dt2), 0) ylist <- c(0, r * sin(t[i] - dt2), r * sin(t[i] + dt2), 0) polygon(xlist, ylist,col=col[1], border=col[1]) } title(title) } else if (type == "median") { max <- max(x$data$fivenum[,3], na.rm=TRUE) for (i in 1:nt) { r <- x$data$fivenum[i,3] / max xlist <- c(0, r * cos(t[i] - dt2), r * cos(t[i] + dt2), 0) ylist <- c(0, r * sin(t[i] - dt2), r * sin(t[i] + dt2), 0) polygon(xlist, ylist,col=col[1], border=col[1]) } title(title) } else if (type == "fivenum") { max <- max(x$data$fivenum[,5], na.rm=TRUE) for (i in 1:nt) { for (j in 2:5) { tm <- t[i] - dt2 tp <- t[i] + dt2 r0 <- x$data$fivenum[i, j-1] / max r <- x$data$fivenum[i, j ] / max xlist <- c(r0 * cos(tm), r * cos(tm), r * cos(tp), r0 * cos(tp)) ylist <- c(r0 * sin(tm), r * sin(tm), r * sin(tp), r0 * sin(tp)) thiscol <- col[c(2,1,1,2)][j-1] polygon(xlist, ylist, col=thiscol, border=col[4]) } r <- x$data$fivenum[i, 3] / max lines(c(r * cos(tm), r * cos(tp)), c(r * sin(tm), r * sin(tp)), col="blue", lwd=2) } title(title) } invisible() } # end of PLOT.WINDROSE2() # Example: x11() az <- c(1, 22.5, 45, 90, 180, 270, 315, 359, 360, 192, 135) ws <- rep(1, length(az)) theta <- seq(22.5, 360, by=22.5) title <- "Test" PLOT.WINDROSE2(ws, az, theta, type="mean", title=title) --Scott Waichler scott.waich...@pnl.gov ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.