Hello, I have a question regarding competing risk regression using cmprsk package (function crr()). I am using R2.9.1. How can I do to assess the effect of qualitative predictor (gg) with more than two categories (a,b,c) categorie c is the reference category. See above results, gg is considered like a ordered predictor ! Thank you for your help Jan
> # simulated data to test > set.seed(10) > ftime <- rexp(200) > fstatus <- sample(0:2,200,replace=TRUE) > gg <- factor(sample(1:3,200,replace=TRUE),1:3,c('a','b','c')) > cov <- matrix(runif(600),nrow=200) > dimnames(cov)[[2]] <- c('x1','x2','x3') > cov2=cbind(cov,gg) > print(z <- crr(ftime,fstatus,cov2)) convergence: TRUE coefficients: x1 x2 x3 gg 0.2624 0.6515 -0.8745 -0.1144 standard errors: [1] 0.3839 0.3964 0.4559 0.1452 two-sided p-values: x1 x2 x3 gg 0.490 0.100 0.055 0.430 > summary(z) Competing Risks Regression Call: crr(ftime = ftime, fstatus = fstatus, cov1 = cov2) coef exp(coef) se(coef) z p-value x1 0.262 1.300 0.384 0.683 0.490 x2 0.652 1.918 0.396 1.643 0.100 x3 -0.874 0.417 0.456 -1.918 0.055 gg -0.114 0.892 0.145 -0.788 0.430 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.