* * Hi ,
Can anyone help me please with this problem?* * *CASE-I* all_raw_data_NAomitted is my data frame.It has columns with names i1 ,i2, i3,i4 , till i15.It has 291 rows actually ,couldnt show here. The data frame looks like this:-- i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 2 2 2 2 2 2 2 2 2 2 2 1 2 2 3 2 3 2 2 2 2 3 2 2 3 3 3 2 3 3 3 3 4 2 2 2 2 2 2 2 1 1 1 2 1 2 2 2 6 2 2 1 2 1 1 2 2 1 1 1 1 2 2 2 8 3 2 2 2 3 3 3 2 3 2 3 2 3 3 2 9 2 2 2 2 2 2 3 3 3 2 3 3 3 2 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 3 2 2 2 1 3 2 1 2 2 3 3 While doing regression i1 being the dependent variable and i2 as the predictor the outputs produced are not correct.The o/ps are as shown below:--- *all_raw_data_NAomitted$i1<-as.vector(as.matrix(all_raw_data_NAomitted$i1)) all_raw_data_NAomitted$i2<-as.vector(as.matrix(all_raw_data_NAomitted$i2)) * * * *fit<-lrm(i1 ~ i2 + NULL,all_raw_data_NAomitted)* > source("regression.R") [1] "Printing regression value........................." Call: lm(formula = i1 ~ i2, data = all_raw_data_NAomitted) Residuals: Min 1Q Median 3Q Max -1.46154 -0.19277 -0.03529 -0.03529 1.96471 *Coefficients:* * Estimate Std. Error t value Pr(>|t|)* *(Intercept) 1.19277 0.05302 22.50 <2e-16 **** *i22 0.84252 0.06469 13.03 <2e-16 **** *i23 1.52723 0.11021 13.86 <2e-16 **** *i24 2.26877 0.14409 15.74 <2e-16 **** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.4831 on 287 degrees of freedom Multiple R-squared: 0.5815, Adjusted R-squared: 0.5771 F-statistic: 132.9 on 3 and 287 DF, p-value: < 2.2e-16 Error in main() : In addition: Warning messages: 1: In model.matrix.default(mt, mf, contrasts) : variable 'i1' converted to a factor 2: In model.matrix.default(mt, mf, contrasts) : variable 'i2' converted to a factor *The results produced are incorrect and do not match with SPSS results ,you can find it out having a look at the coefficients sections of the result.my variables were i1 and i2.* *CASE-II* Whereas if I do this the results produced are correct:-- > d1<-c(1,2,3,NA,6,7,8) > d2<-c(2,3,4,3,1,2,2) > d3<-c(2,1,2,1,2,1,3) > d4<-c(5,6,2,1,1,2,2) > d<-data.frame(d1,d2,d3,d4) > d d1 d2 d3 d4 1 1 2 2 5 2 2 3 1 6 3 3 4 2 2 4 NA 3 1 1 5 6 1 2 1 6 7 2 1 2 7 8 2 3 2 > fit<-lm(d1 ~ d2+d3+d4) > summary(fit) Call: lm(formula = d1 ~ d2 + d3 + d4) Residuals: 1 2 3 5 6 7 -1.7865 0.9698 -1.2250 -1.4802 1.2761 2.2459 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.1912 5.1807 1.774 0.218 d2 -0.7570 1.2208 -0.620 0.598 d3 0.0151 1.7474 0.009 0.994 d4 -0.9842 0.6772 -1.453 0.283 Residual standard error: 2.692 on 2 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.6507, Adjusted R-squared: 0.1267 F-statistic: 1.242 on 3 and 2 DF, p-value: 0.4751 In case (I) if I make the individual columns as vectors also ,I do not get correct results.what could be the cause of the incorrect results produced. -- Thanks Moumita [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.